Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пара слов о сварочных смесях (Ar CO2) генератор углекислоты своими руками от сварщиков-экспериментаторов

Пара слов о сварочных смесях (Ar+CO2) + генератор углекислоты своими руками от сварщиков-экспериментаторов

smes-1

Про сварку в газовых смесях ходят легенды. Вот, например, если варить в смеси Ar-75%+CO2-25%, то и брызги исчезают совсем и электродного присадочного материала расходуется меньше: писаки на разношерстных сайтах о сварке утверждают со знанием дела о 3-5% экономии! Если варить много, приличная, однако, экономия получается. Плюс ко всему вместо мелкокапельного металлопереноса образуется фактически струйный перенос металла с электродной проволоки в сварочную ванну, что делает шов плотнее и, очевидно, прочнее. При больших объемах сварки с СО2 обмерзает редуктор и не работает, так что приходится использовать всякие дополнительные приспособления – подогреватели углекислого газа. Так же при сварке в углекислоте наблюдается сильно разбрызгивание. А со смесью этого не происходит. И баллон приходится менять реже.

В общем, смесь «рулит», не смотря на то, что СО2 дешевле и не так чувствительна к подготовке сварочных кромок.

В связи с чем вопрос: действительно ли использование сварочных смесей на основе Ar так эффективно или все-таки лучше варить СО2?

Лично мне очевидно, что процентное соотношение Ar + СО2 газовой смеси выбирают в зависимости от толщины металла, количества легирующих элементов в нем и с учетом требований по механической прочности шва. В целом, играясь этим соотношением можно улучшить или ухудшить свойства сварного соединения.

Конечно, сколько сварщиков, столько мнений, а истина находится где-то посередине. Первое, что, очевидно, нужно учитывать, это тип вашего полуавтомата. Если он рассчитан только на MAG –сварку в активном газе – углекислоте, то использование смеси с высоким содержанием в ней аргона приведет к возникновению проблем с клапаном. Поэтому для сварки в смесях логично выбирать инвертор MIG.

Теперь по сути проблемы…

Может показаться, что смесь применять вообще не стоит, так как есть здесь определенный маркетиноговый ход, позволяющий накрутить цену за счет манипуляций с процентным соотношением разностоимостных газов в баллоне. В итоге получается, что за суррогат аргона и углекислоты нужно платить так же, как за первосортный аргон. Здесь дело обстоит примерно как с бензином. Был 76-й и 92-й бензин. В итоге придумали нечто среднее между этими двумя марками 80-й. В итоге сами знаете, что получилось.

С другой стороны профессиональные сварщики знают, что действительно смесь эффективна при сварке коррозионостойких сталей, оцинкованного металла, хотя по всем теоретическим канонам сварка в чистом аргоне этих же марок и покрытий качество швов должна только улучшить. Но на практике все происходит иначе.. В промышленности готовят смесь Ar-95-98%+CO2-2-5%. Но очевидно, что на характер плавления влияют все факторы процесса:

  • марка стали ( сварка нержавеющей стали 20Х13 может отличаться от ст. 12Х18Н10Т и т.д.)
  • марка присадочной проволоки
  • режимы сварки.

Исходя из этого становится понятно, почему смесь, которая одному сварщику подходит идеально, для другого дает неудовлетворительный результат. С нашей точки зрения, однозначного ответа в какой пропорции лучше варить здесь нет. Ее надо подбирать индивидуально в каждом конкретном случае в зависимости от исходных данных.

Аргон применяют при сварке легированных/высоколегированных и жаропрочных сталей, алюминия, титана.

Если же вы занимаетесь кузовным ремонтом, другими словами сваркой низкоуглеродистых сталей, которые применяют в автопроме – здесь однозначно нужно применять углекислоту. Хотя, если будете варить «чернягу» аргоном разницы не почувствуете (разве что в цене за баллон?). Почему так, прояснит следующая статья.

Генератор углекислоты для сварки своими руками

Но немного отвлечемся от серьезной темы…

В каждой шутке есть доля шутки, а остальное правда…

Оказывается, приличный шов, ничем не уступающий по качеству шву, сваренному в смеси аргона с углекислотой, можно получить при сварке на cocacola5pb3Кока-Коле (Coca Cola). Вспоминаем, что только не делали с этой самой Кока-Колой: и пили, и ели ее, и как средство от ржавчины использовали, ведь «богатый» состав этого чудо-напитка содержит много чего, даже немножко ортофосфорной кислоты. Ее добавляют как усилитель вкуса, или «Третий вкус», изобретенный японцами в «стране восходящего солнца» – этот самый «вкус» более интенсивно всасывается и ощущается вкусовыми рецепторами. Не забываем при этом, что ортофосфорная кислота применяется еще много где в химической промышленности и, в частности, в ваннах электрополировки вместе с хлористым ангидридом и прочими хим. веществами. Электрополировка, напомним, в промышленности служит для придания изделиям из нержавейки товарного вида .

Читайте так же:
Мощный блок питания для шуруповерта

Так вот, оказалось, что у Кока-Колы обнаружился еще один «талант»: ее можно применять в качестве защитной среды при сварке полуавтоматом низкоуглеродистых и низколегированных сталей проволокой св.08Г2С.

Рецепт приготовления защитной среды прост:

  • Кока-Кола – 0,5 л
  • Уксус -1,25 мл
  • Сода пищевая – 100 г
  • Лимонная кислота – 20г.

Получается вот такая смесь в предложенных пропорциях и генератор диоксида углерода по совместительству.

А далее, как в сказке: чем дальше, тем страшней…

Берем мерную кружку, засыпаем в нее лимонную кислоту, затем соду, перемешиваем. Предварительно подготавливаем два куска газетной бумаги и высыпаем содержимое нашей кружки аккуратной дорожкой на них. Аккуратно сворачиваем газеты в трубочки так, чтобы содержимое осталось внутри, и скручиваем торцы трубочек так, чтобы содержимое никуда не высыпалось.

Берем пластиковую бутылку и наливаем в нее 0,5 л Кока-Колы, добавляем уксус и пару подготовленных трубочек. Накручиваем трубку для подачи газа в сварочную горелку на бутылку – и вуаля, газовая защитная атмосфера своими руками готова к применению. Проверка шва, выполненного на кока-коле, дала положительный результат.

Вывод: если у вас кончился баллон с газом посреди ночи и варить все-равно надо, а в хозяйстве есть Кола и то, что на кухне у жены под рукой должно всегда найтись – вы будете спасены, сможете закончить работу до утра и при этом не оставите разочарованными ваших заказчиков.

9 фактов, которые нужно знать о углекислом газе

Углекислый газ часто используется в качестве защитной среды для GMAW сварки углеродистых сталей. В случае применения этого газа для других металлов, он может спровоцировать окисление сварных швов, ухудшить металлургические свойства металла. С углеродистыми сталями двуокись углерода взаимодействует наоборот. Он придает полезные свойства сварному шву и не способствует его деформации.

В чем сила углекислого газа для сварки?

Применяя чистый углекислый газ в качестве экранирующей среды не стоит рассчитывать на невероятно красивый сварной шов, но в сочетании с другими газами, например, с аргоном, можно рассчитывать на улучшения стабильности сварочной дуги, получить оптимальную текучесть металла в сварочной ванне, повысить прочность сварных швов.

Чтобы понять почему так важен углекислый газ для сварки стоит предварительно ответить на другие вопросы:

  • Как возможна сварка с этим газом, если он способствует окислению?
  • Что делает его таким особенным?

9 фактов и преимуществ углекислого газа

Вот некоторые основные причины, из-за которых диоксид углерода применяется в качестве защитного газа для дуговой сварки углеродистых сталей. 9 фактов

Улучшенное проникновение

Как защитный газ двуокись углерода обеспечивает лучшее проникновение и более глубокий провар. Таким образом наличие в экранирующей смеси углекислого газа улучшает физико-химические свойства свариваемого металла в области боковой стенки и корня шва.

Минимизация затрат

Одним из самых больших преимуществ, которое весьма повышает ценность углекислого газа для сварки среди других защитных газов, является его низкая стоимость. Применяя двуокись углерода вместо кислорода можно избежать окисления в металле сварного шва. Будучи тяжелее чем кислород, СО2 обеспечивает лучшие характеристики экранирования. Но есть одно замечание. Чистый углекислый газ для сварки дешевле, чем аргон и гелий, но в сравнении с ними при его применении качество сварных швов становится хуже, могут быть сварочные брызги. Поэтому чаще всего он применяется в комбинации с иными газами, позволяя таким образом повысить производительность сварочных работ и снизить их себестоимость.

Эффективен в сочетании с другими газами

Как мы говорили, чистый углекислый газ при сварке не дает очень высоких результатов для большинства металлов. Но если его смешать с другими газами, можно добиться значительного улучшения качественных свойств сварного шва и параметров сварочной дуги. К примеру, в сочетании с инертными газами (тот же аргон, соотношение 75% Ar + 25% СО2 или 82% Ar +18% СО2 (по стандарту)), устраняется проблема разбрызгивания и дуговой нестабильности.

Если во время сварки углеродистых и легированных сталей плавящимся электродом использовать смесь углекислого газа (до 20%), кислорода (до 5%) и аргона, то можно упредить пористость шва, оптимизировать свойства сварочной дуги, улучшить формирование швов. Смеси, содержащие указанные компоненты, ассоциируются как универсальные. Применяя их, можно выполнять сварку с разными режимами: импульсным и циклическим с короткой дугой, струйным, крупнокапельным и ротационным переносом металла. Такие смеси помогают сваривать углеродистые и низколегированные стали разной толщины.

Читайте так же:
Восстановление аккумулятора шуруповерта bosch

Углекислый газ может быть в составе тройных смесей (Ar +СО2 + О2) или только в сочетании с чистым кислородом (добавляется от 2 – 5% до 20%). В последнем случае двойная смесь способствует уменьшению потерь металла при разбрызгивании на 30-40%, так как перенос электродного металла стает мелкокапельным за счет поверхностного натяжения.

Стоит отметить, бинарные газовые смеси (Аг + СО2) применяются при технике как обычного – так и импульсно-струйного переноса металла для большинства известных марок углеродистых сталей, нержавейки.

Предотвращение подреза сварного шва

Как известно, диоксид углерода является более плотным газом, он понижает звуковые колебания при сварке. Таким образом применение углекислого газа может предотвратить серьезные недостатки сварки, к которым относится подрез сварного шва.

Безопасность

Углекислота — это нетоксичный, а также не взрывоопасный газ. Если не соблюдать элементарных правил безопасности, превышение допустимой концентрации СО2 более 92г/м 3 (5%) в закрытых помещениях, емкостях провоцирует кислородную недостаточность, удушье.

Хорошая вентиляция на рабочем месте является важным шагом, позволяющим сделать вашу работу более безопасной.

Защита от ржавчины

Углекислый газ в качестве защитной среды при сварке наименее чувствителен к возможной ржавчине на кромках (в разумных пределах, конечно) и предотвращает ее появление в сварном шве. С одной стороны, применение СО2 защищает расплавленный металл и сварочную дугу от влияния окружающей атмосферы, с другой — этот газ разлагается при высокой температуре дуги на окись углерода и кислорода, проявляя окисляющее действие на расплавляемый металл. Для связывания кислорода и его удаления из сварочной ванны важным является повышенное количество раскислителей, таких, как кремний и марганец. Двуокись углерода с нормальным содержанием влаги при правильном сочетании с другими газами помогают предотвратить дефекты сварки, такие как пористость, непровар, непровар в металле сварного шва.

Простота и универсальность

  • Возможность проведения работ в разных пространственных положениях в режимах автоматической и полуавтоматической сварки.
  • Отсутствие необходимости в приспособлениях для подачи и отвода флюса.

Применение СО2 является наиболее эффективным при сварке тонколистовых углеродистых сталей. Этот газ часто используется при кузовном ремонте легковушек, грузовиков. Тут преимущества наличия защитной среды СО2 выявляются особенно четко.

Улучшение прочности сварного шва

В процессе сварки, подходящий состав газов и соответствующие расходные материалы являются первичными инструментами и факторами, влияющими на получение необходимой ударной вязкости металла в сварном шве. Диоксид углерода в сочетании с другими газами способствует повышению ударной вязкости сварного соединения.

Снижение поверхностного натяжения

Поверхностное натяжение является еще одной проблемой для углеродистых сталей. Из-за этого для них проникновение расплава хуже. Наплавляемый металл в расплавленном состоянии приобретает высокое поверхностное натяжение, которое не можно уменьшить при использовании таких инертных газов как гелий, аргон и т.д. В этом случае диоксид углерода является единственным защитным газом, способным уменьшить интенсивность поверхностного натяжения, обеспечивает лучший провар. Таким образом описанные выше преимущества делают углекислый газ для сварки углеродистых сталей весьма важным инструментом хорошего сварного шва, особенно если речь идет о порошковых электродах.

Автоматическая сварка в среде защитных газов


7084

Упрощение технологии сваривания, которое не ведет к ухудшению качества, помогает сделать данный вид соединения металла еще более востребованным. Автоматическая сварка в среде защитных газов на данный момент является одним из основных вариантов серийного производства сварных изделий. Это вполне оправдано теми факторами, что автоматика позволяет достичь высокой производительности, скорости создания деталей и достойного качества. В то же время сама технология применения защитных газов становится гарантией качества, так как именно данный метод считается одним из самых надежных. Хотя себестоимость применения газовой защиты выше, чем у ручной дуговой сварки, она дает более надежное соединение. Особенно это проявляется во время работы с тонкими листами, цветными металлами и сложно свариваемыми сплавами.

Автоматическая сварка в среде защитных газов

Автоматическая сварка в среде защитных газов

Правильная настройка параметров автомата дает возможно исключить появление дефектов из-за человеческой неаккуратности. После подбора параметров, техника будет проводить сварку одинаково во всех случаях, что и требуется для серийного производства.

Область применения

Автоматическая сварка в СО2 больших толщин, а также прочие ее разновидности используются преимущественно в промышленности. Для частного применения такие параметры оказываются невостребованными. Для серийного производства это незаменимая вещь, но для изготовления 1-2 деталей лучше воспользоваться обыкновенным ручным методом. Ремонт также невозможно привести с помощью этой технологии.

Читайте так же:
Как снять аккумулятор с шуруповерта

Цеха по производству металлоконструкций, предприятия занимающиеся выпуском металлических изделий и прочие сферы, основанные на серийном производстве, обязательно используют такую технику. Даже сложность работы с газом не останавливает ее развитие. Ведь здесь все сводится к подготовительным работам, которые должны выполняться на высоком уровне, благодаря чему и обеспечивается одинаковое качество для каждого изделия в партии.

Преимущества

Данная технология не зря получила широкое распространение в промышленности, так как она обладает рядом преимуществ:

  • Высокая производительность процесса сварки, если речь идет о серийном производстве;
  • Все делается одинаково по заданным настройкам, так что нет негативного человеческого фактора;
  • Швы обладают высоким качеством, так как газ дает отличную защиту;
  • Можно соединять сложно свариваемые, и даже разнородные металлы;
  • Для обслуживания автомата не требуется большого количества людей.

Недостатки

В качестве недостатков стоит отметить следующие факторы:

  • При ошибке в параметрах, брак распространится на всю серию изделий;
  • Техника имеет ограниченный предел настроек, так что не все параметры можно подобрать;
  • Стоимость оборудования делает данную технику недоступной для многих людей;
  • Нет возможности создать шов в любом положении и с любыми параметрами, так как для этого система может не обладать достаточными параметрами, тогда как вручную это сделать намного проще.

Принцип работы и технология механизированной сварки

Автоматическая сварка в защитных газах проводится с использованием сварочной проволоки или электродов без покрытия использует два основных принципа действия. От электросварки здесь взято разогревание металла до состояния плавления при помощи электрической дуги. Для этого могут использоваться как плавкие, так и неплавкие электроды. Отсутствие покрытия компенсируется газовой оболочкой. Сам принцип сваривания практически не отличается от того, что используется в ручной сварке защитными газами.

Автоматическая сварка в защитных газах

Автоматическая сварка в защитных газах

Главным отличием является то, что установка обладает системой управления, которая помогает проводить все процедуры без участия человека. В ней имеется ряд параметров, которые нужно выставлять для создания соответствующего режима, а затем включается все на поток. Настройка является одним из самых сложных процессов, в данном деле.

«Важно!

Тут нужно четко придерживаться технологии, так как малейший недочет может привести к браку всей партии.»

Используемые защитные газы

В данной сфере может использоваться несколько разновидностей защитных газов, у каждого из которых есть свои свойства и особенности. Среди основных газов следует выделить такие:

    – создает высокий уровень защиты, но вреден для здоровья человека, а также обладает высокой стоимостью;
  • Гелий – редко используется, но хорошо подходит для изделий с большой толщиной проварки; – относительно дешевый и безопасный вариант, но годен преимущественно для углеродистых сталей средней толщины; – данный вид газа не часто встречается в сварке, но для особых случаев его все же применяют.

Сварочные материалы и оборудования

В качестве основных сварочных материалов и используемого оборудования применяются следующие вещи:

    или электрод без покрытия;
  • Неплавкий электрод;
  • Горелка;
  • Защитный газ;
  • Автоматическая система для подачи заготовок и управления сварочными инструментами;
  • Сварочная маска.

Оборудование для автоматической сварки в среде защитных газов

Оборудование для автоматической сварки в среде защитных газов

Техника безопасности

Чтобы процесс проходил максимально безопасно, необходимо проверить целостность шлангов, соединяющих горелку и источники газа. Также нужно проверить, чтобы ничего не травило, так как в ином случае будет опасность взрыва. Все настройки, ремонтные работы и прочие манипуляции проводятся только тогда, когда аппаратура отключена от сети. Во время процесса сварки запрещается вмешиваться в него.

Заключение

Автоматическая сварка выводится в особый разряд, так как эта технология стоит обособленно. Здесь не применяется человеческий труд непосредственно, так как основные манипуляции отводятся машине. Человеку нужно только следить за всем происходящим и задавать настройки. В то же время это повышает ответственность, так как по невнимательности можно создать такую ситуацию, когда вся партия изделий окажется непригодной для использования из-за имеющихся дефектов. В остальном это очень эффективный процесс.

Режимы и техника сварки

Основные параметры режима сварки в активных газах и их влияние на процесс сварки практически те же, что и при сварке в инертных газах. Сварку в активных газах выполняют на по­стоянном токе. Сила тока также зависит от диаметра и состава электрода и скорости подачи электродной проволоки, полярно­сти, вылета электрода и состава газа (рис. 55). Силу тока регу­лируют путем изменения скорости подачи проволоки, подогрева проволоки на вылете и изменения напряжения дуги. Стабильный процесс сварки с хорошими технологическими свойствами мож-

Читайте так же:
Резьба на полипропиленовых трубах

но получить только в определенном диапазоне токов, который зависит от диаметра электрода.

Сила тока является одним из основных факторов, опреде­ляющих глубину и форму провара, а также производительность расплавления проволоки (рис. 56). Глубина провара при сварке в углекислом газе несколько больше, чем при сварке под флю­сом. Это обусловлено, по-видимому, большим давлением дуги в углекислом газе, меньшим гидростатическим давлением жид­кого металла, уравновешивающим давление дуги благодаря отсутствию слоя флюса на жидком металле, а также избыточ­ного давления внутри флюсового пузыря. В результате при сварке в углекислом газе дуга интенсивнее оттесняет металл из-под основания дуги.

Напряжение дуги и всего процесса является важнейшим элементом режима сварки. Особенно велика роль напряжения дуги Ua при сварке в углекислом газе с частыми короткими замыканиями. При уменьшении диаметра электрода влияние возрастает. С повышением 1>л увеличиваются общая длина дуги и ее внешняя составляющая, а также ширина шва, уменьшается высота усиления и улучшается форма шва (см. рис. 56). Однако одновременно с повышением Uд увеличиваются потери на раз­

брызгивание (см. рис. 19) и окисление металла. С целью получе­ния хорошей формы провара и внешнего вида шва и небольших потерь на разбрызгивание, а также высокой производительно-

Рис. 56. Зависимость размеров шва (а, б, в иг) и коэффициента плавления ka(d) от диаметра электрода и силы тока при сварке в углекислом газе на обратной полярности. Проволока Св-08Г2С

сти сварку следует вести на оптимальных напряжениях дуги (см. рис. 49). Величина их зависит от рода защитного газа, силы сварочного тока, пространственного выполнения сварки, диаметра и состава электрода, динамических свойств источника питания и других факторов.

Химический состав проволоки, смазка и загрязнения, нахо­дящиеся на проволоке и свариваемом металле, могут оказывать влияние на силу тока, длину дуги, напряжение и характер про­цесса. Вылет электрода при сварке проволоками d3 = 0,5 — г — — г — 1,4 мм влияет на стабильность процесса сварки. Обусловлено это изменением нагрева электрода на вылете проходящим током. Допустимый вылет электрода зависит от диаметра, удельного электрического сопротивления электрода и силы сварочного тока. При малых вылетах затрудняется видимость зоны сварки и возможно подплавленис токоиодвода, а при больших — нару­шение стабильности процесса. При сварке проволоками d3 = = 1,6 мм и более влияние вылета электрода на стабильность процесса сварки намного меньше. В этих случаях сварку можно выполнять при нормальных и повышенных вылетах.

Увеличение вылета позволяет повысить коэффициент рас­плавления электрода и уменьшает глубину провара [5, 82].

Род активного газа оказывает значительное влияние на технологические характеристики и форму проплавления. При сварке в углекислом газе и смеси Аг + более 25% С02 на всех режимах, а также в смесях Аг 4- 02 и Аг + менее 15% С02 с силой тока меньше критической форма провара такая же, как при сварке под флюсом. При сварке в смесях Аг + 02 и Аг + менее 15% С02 с силой тока выше критической появляется узкое глубокое проплавление по центру шва. С увеличением силы тока и уменьшением диаметра электрода глубина узкого проплавления увеличивается.

Влияние скорости сварки примерно такое же, как при сварке под флюсом.

Наклон электрода углом вперед и углом назад до 30° (отно­сительно перпендикуляра к детали) не отражается на харак­тере процесса. При больших углах наклона увеличивается раз­брызгивание. При сварке углом вперед глубина провара не­сколько уменьшается, а ширина шва увеличивается. При этом сварку можно вести на повышенных скоростях. При сварке уг­лом назад более 15° глубина провара несколько увеличивается.

По сравнению со сваркой на обратной полярности процесс сварки на прямой полярности отличается большей длиной дуги, большим излучением и в ряде случаев большим разбрызгива­нием. Скорость расплавления электрода увеличивается в

1,6— 1,8 раза. При малых и средних значениях силы тока глу­бина провара намного меньше, а стабильность процесса и фор­мирование шва хуже. С увеличением силы тока стабильность процесса повышается, формирование шва улучшается, разбрыз­гивание уменьшается. Влияние свойств источника питания наи­более существенно сказывается на технологических характери­стиках при ведении процесса с короткими замыканиями в угле­кислом газе и смесях Аг + С02, Аг — f 02 + С02. В этих случаях для получения стабильного процесса, хорошего формирования швов и небольшого разбрызгивания необходимо питать дугу от источников с определенными динамическими свойствами по току (см. рис. 63).

Читайте так же:
Большие ножницы по металлу ручные

Оптимальные скорости нарастания /кз зависят прежде всего от диаметра электрода. Для получения хорошего формирования при сварке в нижнем положении целесообразно несколько пони­жать скорости нарастания /к. з, повышать напряжение (см. рис. 49) и использовать питание от источников с пологопадаю­щей внешней характеристикой (k — 0,03 4- 0,08 В/A). При чрезмерном уменьшении скорости нарастания /кз затрудняется установление и снижается стабильность процесса сварки. При сварке в углекислом газе без коротких замыканий при средних и больших значениях силы тока, а также в смесях Аг + 02 и Аг + С02 скорости нарастания /кэ оказывают значительно мень­шее влияние на течение процесса.

При сборке соединений под сварку в активных газах следует соблюдать те же рекомендации, что и для сварки в инертных газах. Прихватки можно выполнять контактной сваркой, свар­кой в углекислом газе тонкой проволокой и вручную качест­венными электродами, желательно с основным покрытием. Применять электроды с меловым покрытием и некачественные не рекомендуется, так как при их переварке в основном шве образуются поры. Наиболее рационально выполнять прихватки полуавтоматом тонкой проволокой в углекислом газе. В случае их расположения со стороны основного шва к ним следует предъявлять те же требования, что и к основному шву, и не переваривать.

Технологические особенности сварки в среде защитных газов и их смесях

Применение дуговой сварки в среде защитных газов благодаря ее технологическим и экономическим преимуществам все больше возрастает. Технологическими преимуществами являются относительная простота процесса сварки и возможность применения механизированной сварки в различных пространственных положениях. Незначительный объем шлаков позволяет получить высокое качество сварных швов. Сварка в среде защитных газов применяется для соединения как различных сталей, так и цветных металлов. Для сварки в защитных газах кроме источника питания дуги требуются специальные приборы и оснастка (приспособления). Сварочный пост для сварки в среде защитного газа представлен на рис. 82.

Технологические особенности сварки в среде защитных газов и их смесях

Рис. 82. Пост для сварки в среде защитного газа: 1 — баллон с газом; 2 — подогреватель; 3 — осушитель; 4 — редуктор; 5 — расходомер (ротаметр); 6 — газоэлектрический клапан; 7 — источник питания; 8 — пульт управления; 9- рабочий стол; 10 — подающий механизм; 11 — горелка

Сварка в защитных газах — это общее название разновидностей дуговой сварки, при которых через сопло горелки в зону горения дуги вдувается струя защитного газа. В качестве защитных газов применяют: аргон, гелий (инертные газы); углекислый газ, кислород, азот, водород (активные газы); смеси газов (Ar + CO2 + O2; Ar + O2; Ar + CO2 и др.). Смеси защитных газов должны удовлетворять требованиям ТУ.

Аргонокислородную смесь (Ar + 1—5 % О2) применяют при сварке малоуглеродистых и легированных сталей. В процессе сварки капельный перенос металла переходит в струйный, что позволяет увеличить производительность сварки и уменьшить разбрызгивание металла.

Смесь аргона с углекислым газом (Ar + 10—20 % СО2) также применяют при сварке малоуглеродистых и низколегированных сталей. При использовании этой смеси защитных газов устраняется пористость в сварных швах, повышается стабильность горения дуги и улучшается формирование шва.

Тройная смесь (75 % Ar + 20 % СО2 + 5 % О2) при сварке сталей плавящимся электродом обеспечивает высокую стабильность горения дуги, минимальное разбрызгивание металла, хорошее формирование шва, отсутствие пористости.

На практике используются либо баллоны с готовой смесью газов, либо баллоны с каждым газом отдельно. В последнем случае расход каждого газа регулируется отдельным редуктором и измеряется ротаметром типа РС-3.

При сварке в среде защитных газов различают следующие основные способы: сварка постоянной дугой, импульсной дугой;

плавящимся электродом и неплавящимся электродом.

Наиболее широко применяется сварка в среде защитных газов плавящимся и неплавящимся электродами.

Сварка неплавящимся электродом в защитных газах — это процесс, в котором в качестве источника теплоты применяется дуга, возбуждаемая _1 1 Т^Омежду вольфрамовым или угольным

(графитовым) электродом и изделием.

Сварка постоянным током прямой полярности позволяет получать максимальное проплавление свариваемого металла.

При сварке на постоянном токе применяются источники питания с крутопадающей ввольт-амперной характеристикой:

ВДУ-305, ВДУ-504, ВДУ-505, ВДУ-601, ВСВУ-300.

В комплект сварочной аппаратуры при сварке на постоянном токе входят сварочные горелки, устройства для первоначального возбуждения сварочной дуги, аппаратура управления сварочным циклом и газовой защиты Техническая характеристика некоторых сварочных горелок для ручной сварки вольфрамовым электродом приведена в табл. 40:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector