Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ацетилен: химические свойства, получение, применение, меры предосторожности

Ацетилен: химические свойства, получение, применение, меры предосторожности

Ацетилен (или по международной номенклатуре — этин) — это непредельный углеводород, принадлежащий к классу алкинов. Химическая формула ацетилена — C2H2. Атомы углерода в молекуле соединены тройной связью. Он является первым в своем гомологическом ряду. Представляет собой бесцветный газ. Очень огнеопасен.

Получение

Все методы промышленного получения ацетилена сходятся к двум типам: гидролиз карбида кальция и пиролиз различных углеводородов. Последний требует меньших энергозатрат, но чистота продукта довольно низкая. У карбидного метода — наоборот.

Суть пиролиза заключается в том, что метан, этан или другой легкий углеводород при нагреве до высоких температур (от 1000 °C) превращается в ацетилен с выделением водорода. Нагрев может осуществятся электрическим разрядом, плазмой или сжиганием части сырья. Но проблема состоит в том, что в результате реакции пиролиза может образовываться не только ацетилен, но и еще множество разных продуктов, от которых необходимо впоследствии избавляться.

Карбидный метод основан на реакции взаимодействия карбида кальция с водой. Карбид кальция получают из его оксида, сплавляя с коксом в электропечах. Отсюда и такой высокий расход энергии. Зато чистота ацетилена, получаемого таким способом, крайне высока (99,9 %).

В лаборатории ацетилен также можно получить дегидрогалогенированием дигалогенпроизводных алканов с помощью спиртового раствора щелочи.

Физические свойства ацетилена

Ацетилен — это газ без цвета и запаха. Хотя примеси могут давать ему чесночный запах. Практически не растворим в воде, немного растворим в ацетоне. При температуре -83,8 °C сжижается.

Химические свойства ацетилена

Исходя из тройной связи ацетилена, для него будут характерны реакции присоединения и реакции полимеризации. Атомы водорода в молекуле ацетилена могут замещаться другими атомами или группами. Поэтому можно сказать, что ацетилен проявляет кислотные свойства. Разберем химические свойства ацетилена на конкретных реакциях.

  • Гидрирование. Осуществляется при высокой температуре и в присутствии катализатора (Ni, Pt, Pd). На палладиевом катализаторе возможно неполное гидрирование.

Гидрирование ацетилена

  • Галогенирование. Может быть как частичным, так и полным. Идет легко даже без катализаторов или нагревания. На свету хлорирование идет с взрывом. При этом ацетилен полностью распадается до углерода.

Галогенирование ацетилена

  • Присоединение к уксусной кислоте и этиловому спирту. Реакции идут только в присутствии катализаторов.

Реакции присоединения

  • Присоединение синильной кислоты.
  • Взаимодействие ацетилена с металл-органическими соединениями.
  • Взаимодействие с металлическим натрием. Необходима температура 150 °C или предварительное растворение натрия в аммиаке.
  • Взаимодействие с комплексными солями меди и серебра.

Реакции с комплексами

  • Взаимодействие с амидом натрия.
  • Димеризация. При этой реакции две молекулы ацетилена объединяются в одну. Необходим катализатор — соль одновалентной меди.
  • Тримеризация. В этой реакции три молекулы ацетилена образуют бензол. Необходим нагрев до 70 °C, давление и катализатор.
  • Тетрамеризация. В результате реакции получается восьмичленный цикл — циклооктатетраен. Для этой реакции также требуется небольшой нагрев, давление и соответствующий катализатор. Обычно это комплексные соединения двухвалентного никеля.

Реакции полимеризации

Это далеко не все химические свойства ацетилена.

Применение

Структурная формула ацетилена указывает нам на довольно прочную связь между атомами углерода. При ее разрыве, например при горении, выделяется очень много энергии. По этой причине ацетиленовое пламя обладает рекордно высокой температурой — около 4000 °C. Его используют в горелках для сварки и резки металла, а также в ракетных двигателях.

Пламя горения ацетилена имеет также очень высокую яркость, поэтому его часто используют в осветительных приборах. Используется он и во взрывотехнике. Правда, там применяется не сам ацетилен, а его соли.

Как видно из разнообразных химический свойств, ацетилен может применяться как сырье для синтеза других важных веществ: растворителей, лаков, полимеров, синтетических волокон, пластмасс, органического стекла, взрывчатых веществ и уксусной кислоты.

Безопасность

Как уже говорилось, ацетилен — огнеопасное вещество. С кислородом или воздухом он способен образовывать крайне легковоспламеняющиеся смеси. Чтобы вызвать взрыв, достаточно одной искры от статического электричества, нагрева до 500 °C или небольшого давления. При температуре 335 °C чистый ацетилен самовоспламеняется.

Из-за этого ацетилен хранят в баллонах под давлением, которые наполнены пористым веществом (пемза, активированный уголь, асбест). Таким образом, ацетилен распределяется по порам, уменьшая риск взрыва. Часто эти поры пропитывают ацетоном, из-за чего образуется раствор ацетилена. Иногда ацетилен разбавляют другими, более инертными газами (азот, метан, пропан).

Этот газ обладает и токсичным действием. При его вдыхании начнется интоксикация организма. Признаками отравления являются тошнота, рвота, шум в ушах, головокружение. Большие концентрации могут приводить даже к потере сознания.

Ацетилен — характеристики и физические свойства ацетилена

Ацетилен можно получить в лабораторных и промышленных условиях. Для получения ацетилена в лаборатории достаточно на карбид кальция (это его формула — СаС2) капнуть небольшое количество воды. после этого начинается бурная реакция выделения ацетилена. Для ее замедления допустимо использовать поваренную соль (формула NaCl).

В промышленных условиях все несколько сложнее. Для производства ацетилена применяют пиролиз метана, а так же пропана, бутана. В последнем случае формула ацетилена будет содержать большое количество примесей.

Карбидный способ производства ацетилена обеспечивает производство чистого газа. Но, такой метод получения продукта должен быть обеспечен большим количеством электроэнергии.

Пиролиз не требует большого количества электричества, все дело в том, что для производства газа, необходимо выполнить нагрев реактора и для этого используют газ, циркулирующий в первом контуре реактора. Но в потоке, который там перемещается, концентрация газа довольно мала.

Выделение ацетилена с чистой формулой во втором случае не самая простая задача и ее решение обходится довольно дорого. Существует несколько способов производства формулы ацетилена в промышленных условиях.

Читайте так же:
Бита под черные саморезы

Электрический крекинг

Превращение метана в ацетилен происходит в электродуговой печи, при этом ее нагревают до температуры в 2000-3000 °С. При этом, напряжение на электродах достигает 1 кВ. Метан разогревают до 1600 °С. Для получения одной тонны ацетилена необходимо затратить 13 000 кВт×ч. Это существенный недостаток производства формулы ацетилена.

Технологическая схема крекинга

Пиролиз окислительный

Этот способ основан на перемешивании метана и кислорода. После производства смеси, часть ее отправляют на сжигание и полученное тепло отправляют на нагревание сырья до температуры в 16000 °С. Такой процесс отличается непрерывностью и довольно скромными затратами электрической энергии. На сегодня этот метод чаще всего можно встретить на предприятиях по производству ацетилена.

Технологическая схема процесса окислительного пиролиза

Кроме перечисленных технологий производства формулы ацетилена применяют такие как — гомогенный пиролиз, низкотемпературную плазму. Все они отличаются количеством энергетических затрат и в итоге разными характеристиками получаемого газа и его формулой.

Резка металла на кислородно-ацетиленовой смеси На каких свойствах ацетилена основано его применение Ацетилен применение в медицине применение алкинов ацетилен

Содержание

  • 1 Получение
  • 1.1 В лаборатории
  • 1.2 В промышленности
  • 1.2.1 Получение пиролизом
  • 1.2.1.1 Электрокрекинг
  • 1.2.1.2 Регенеративный пиролиз
  • 1.2.1.3 Окислительный пиролиз
  • 1.2.1.4 Гомогенный пиролиз
  • 1.2.1.5 Пиролиз в струе низкотемпературной плазмы
  • 1.2.2 Карбидный метод
  • 2 Физические свойства
  • 3 Химические свойства
  • 4 История
  • 5 Применение
  • 6 Безопасность
  • 7 Примечания
  • 8 Литература
  • 9 Ссылки

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Формула ацетилена

Строение молекулы ацетилена

Ацетилен имеет простую формулу — С2Н2. Относительно дешевый способ его получения путем перемешивания воды и карбида кальция сделал его самым применяемым газом для соединения металлов. Температура с которой горит смесь кислорода и ацетилена вынуждает выделяться твердые частицы углерода.

Ацетилен можно доставить к месту выполнения работ в специальных емкостях (газовых баллонах), а можно получить его непосредственно на рабочем месте используя для этого специально сконструированный реактор. Где происходит смешивание воды и карбида кальция.

Ссылки

  • Ацетилен // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

ацетилен, ацетилен + вода, ацетилен википедия, ацетилен вікіпедія, ацетилен гарган авах, ацетилен донецк, ацетилен получение, ацетилен формула, ацетилен хлорирование, ацетиленовий генератор

Химические и физические свойства

Некоторые химические свойства

Свойства ацетилена во многом определены его формулой. То есть наличием атомов углерода и водорода связанных между собой.

Смешивание ацетилена с водой, при добавлении катализаторов типа солей ртути, приводит к получению уксусного альдегида. Тройная связь атомов, содержащихся в молекуле ацетилена приводит к тому, что при сгорании она выделяет 14 000 ккал/куб. м. В процессе сгорания температура поднимается до 3000 °C.

Этот газ, при соблюдении определенных условий, может превращаться в бензол. Для этого необходимо разогреть его до 4000 °С и добавить графит.

Водород, содержащийся в молекулах показывает кислотные свойства. То есть они довольно легко отрываются от молекулы в виде протонов. Ацетилен в состоянии обесцвечивает воду содержащую бром и раствор «марганцовки».

Молярная масса ацетилена составляет 26,04 г/моль. Плотность ацетилена 1,1 кг/м³.

Физические свойства

В стандартных условиях ацетилен представляет собой бесцветный газ, который практически не растворяется в воде. Он начинает кипеть в -830 °С. При сжимании он начинает разлагаться с выделением большого количества энергии. Поэтому для его хранения применяют стальные баллоны способные хранить газ под высоким давлением.

Этот газ недопустимо выпускать в атмосферу. Его формула может отрицательно сказываться на окружающей среде.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.


Сварка при помощи ацетилена


Пламя при ацетиленовой сварке

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм3/час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;
Читайте так же:
Диоды шоттки в блоках питания компьютера

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм3/час, при правом 650-750 дм3/час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Виды ацетилена

Промышленность выпускает два вида ацетилена — твердый и в виде газа.

Газообразный

Ацетилен обладает резким запахом и это дает определённые преимущества при его утечке. По своей массе он близок к атмосферному воздуху.

Жидкий

Жидкий ацетилен не обладает ни каким цветом. У него есть одна особенность он преломляет цвет. Ацетилен и жидкий, и газообразный, представляет собой опасное вещество. То есть при нарушении правил обращения с ним взрыв может произойти в любую секунду, даже при комнатной температуре. Для повышения безопасности при обращении с ним, применяют так называемую флегматизацией. То есть в ёмкости, предназначенной для хранения ацетилена размещают пористое вещество. Которое снижает его опасность

Примечания

  1. 12
    ГОСТ 5457-75. Ацетилен растворённый и газообразный технический. Технические условия

  2. А.Л.Лапидус, И.А.Голубева, Ф.Г.Жагфаров. Газохимия. Учебное пособие. — Москва: ЦентрЛитНефтеГаз, 2008. — 450 с. — ISBN 978-5-902665-31-1.

  3. Большая энциклопедия нефти и газа. Неприятный запах — ацетилен. Проверено 10 октября 2013.

  4. Корольченко, Пожаровзрывоопасность веществ, 2004, с. 198.

  5. Миллер. Ацетилен, его свойства, получение и применение, 1969, с. 72.

  6. Ацетилен. Проверено 10 октября 2013.

  7. В России разработали ракетный двигатель на аммиаке — Известия

Реакции ацетилена

Ацетилен вступает в реакцию с различными соединениями, например, солями меди и серебра. В результате таких взаимодействий получают вещества под названием ацетилениды. Их отличительная черта — взрывоопасность.


Получение ацетилена


Горение ацетилена


Реакция окисления ацетилена


Реакция полимеризации


Реакция замещения ацетилена

Безопасность

Поскольку ацетилен нерастворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

Использование ацетилена

Кроме сварки ацетилен применяют в следующих случаях:

  • для получения яркого света в автономных источниках света (карбидная лампа);
  • при изготовлении взрывчатых веществ, это уже упоминавшиеся ацетилениды;
  • получения некоторых химических веществ, например, уксуса, спирта, полимеров и пр;
  • кроме этого, ацетилен нашел свое применение и в ракетной технике, в качестве компонента топлива.


Резка металла при помощи ацетилена


Использование ацетилена в лампе

Ацетилен

Для газопламенных работ необходимо осуществить передачу тепла из пламени в металл в количестве, достаточном для конкретных условий работ. Горючие газы сгорают, как правило, в смеси с кислородом. Наибольшей температурой обладает ацетилено-кислородное пламя (3200°С), что позволяет использовать ацетилен при любых видах газопламенной обработки металлов. Интенсивность горения пламени определяется произведением нормальной скорости горения на теплоту сгорания смеси. Ацетилен обладает наивысшей «интенсивностью горения», которая для смеси стехиометрического состава составляет 27 700 ккал/(м 2 *с).

Ацетилен

Ацетилен относится к группе непредельных углеводородов ряда СnН2n-2.. Это бесцветный горючий газ со специфическим запахом; благодаря наличию в нем примесей – фосфористого водорода, сероводорода и пр. плотность ацетилена при 20°С и 760 мм рт. ст. равна 1,091 кг/м 3 ; при 0°С и 760 мм рт. ст. – – плотность 1,171 кг/м 3 . Ацетилен легче воздуха; плотность по сравнению с плотностью воздуха 0,9; молекулярная масса 26,038. Критическая точка для ацетилена характеризуется давлением насыщенного пара, равным 61,65 кгс/см 2 , и температурой 35,54°С. При 760 мм рт. ст. и температуре –84°С ацетилен переходит в жидкое состояние, при температуре –85°С – затвердевает.

Читайте так же:
Ремонт натяжителя цепи бензопилы

Ацетилен – единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей. Ацетилен высокоэндотермическое соединение; при разложении 1 кг ацетилена выделяется более 2000 ккал, т. е. примерно в 2 раза больше, чем при взрыве 1 кг твердого ВВ тротила. Температура самовоспламенения ацетилена колеблется в пределах 500 – 600°С при давлении 2 кгс/см 2 и заметно снижается с увеличением давления; так, при давлении 22 кгс/см 2 температура самовоспламенения ацетилена равна 350°С, а при наличии катализаторов, таких, как железный порошок, силикагель, активный уголь и др. разложение ацетилена начинается при 280 – 300°С. Присутствие окиси меди снижает температуру самовоспламенения до 246°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения; поэтому при изготовлении ацетиленового оборудования запрещается применять сплавы, содержащие более 70% Cu.

Взрывчатый распад ацетилена, как правило, начинается при интенсивном нагреве со скоростью 100 – 500°С/с. При медленном нагреве происходит реакция полимеризации ацетилена, идущая с выделением тепла, которая, как правило, при температуре свыше 530°С влечет за собой взрывчатый распад ацетилена. Нижнее предельное давление, при котором возможно разложение ацетилена, равно 0,65 кгс/см 2 . Пределы взрываемости для ацетилена широки (табл. 2). Наиболее опасными являются смеси ацетилена с кислородом стехиометрического состава (

30%). Скорости распространения пламени и детонации достигают наибольшего значения при соотношении ацетилена и кислорода 1:2,5 и соответственно равны 13,5 и 2400 м/с при нормальных условиях. Давление, образующееся при взрыве ацетилена, зависит от начальных параметров и характера взрыва. Оно может возрасти примерно в 10 – 12 раз по сравнению с начальным при взрыве в небольших сосудах и может быть увеличено в 22 раза при детонации чистого ацетилена и в 50 раз при детонации ацетилено-кислородной смеси.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии при получении его в переносных или стационарных ацетиленовых генераторах, либо в растворенном состоянии. Растворенный ацетилен представляет собой раствор ацетилена в ацетоне, распределенный равномерно в пористом наполнителе под давлением. Растворимость ацетилена зависит от температуры и давления. Пористая масса в баллоне обеспечивает рассосредоточение ацетилена по всему объему и локализацию взрывчатого распада ацетилена. При отсутствии пористой массы в баллоне инициированный взрывной распад ацетилена, растворенного в ацетоне, происходит при давлении ниже 5 кгс/см 2 . В качестве пористых наполнителей могут быть использованы не только насыпные пористые массы, но и литые пористые массы, которые нашли применение за рубежом.

Физико-химические показатели газообразного и растворенного технического ацетилена оговорены ГОСТ 5457 – 75. По содержанию допустимого количества примесей различают ацетилен растворенный, растворенный и газообразный; допустимое содержание примесей (в объемных долях) соответственно равно:

  • воздуха и других малорастворимых в воде газов – не более 0,9, 1,0, 1,5;
  • фосфористого водорода – 0,01; 0,04; 0,08;
  • сероводорода – 0,005; 0,05; 0,15;
  • водяных паров при 20°С и 760 мм рт. ст. – 0,5; 0,6.

Технический растворенный ацетилен транспортируют в стальных баллонах. Допустимое максимальное давление в баллонах не должно вревышать 13,4 кгс/см 2 при температуре –5°С и давлении 760 мм рт. ст. и 30 кгс/см 2 при температуре+40°С и давлении 760 мм рт. ст. Остаточное давление в баллоне при тех же параметрах не должно быть меньше соответственно 0,5 и З,0 кгс/см 2 .

Для газопламенной обработки металлов, наряду с ацетиленом, полученным из карбида кальция, применяют пиролизный ацетилен, получаемый из природного газа термоокислительным пиролизом метана с кислородом. Пиролизный ацетилен также хранят и транспортируют в баллонах в растворенном виде. Наполнитель и растворитель для пиролизного ацетилена тот же, что и для ацетилена из карбида кальция.

При применении растворенного ацетилена по сравнению с газообразным обеспечиваются наибольший коэффициент использования карбида, чистота рабочего места сварщика, устойчивая работа аппаратуры и безопасность в работе. Основным сырьем для получения ацетилена, используемого при газопламенной обработке металлов, является карбид кальция. Карбид кальция получают в электрических печах при взаимодействии обожженной извести с коксом или антрацитом. Расплавленный карбид кальция разливают в изложницы, где он застывает; затем его дробят в кусковых дробилках и сортируют по размерам кусков согласно ГОСТ 1460. Ацетилен получают в результате разложения (гидролиза) карбида кальция водой. Действительный «литраж» ацетилена из 1 кг технического карбида при 20°С и 760 мм рт. ст. не превышает 285 л и зависит от грануляции карбида. С увеличением размеров кусков карбида «литраж» увеличивается, однако скорость разложения его уменьшается, т. е. увеличивается длительность разложения карбида (табл. 1).

Содержание фосфористого водорода в ацетилене по объему не более 0,08%, содержание сульфидной серы не более 1,2%. В ГОСТ 1460 оговаривается также допустимое количество кусков карбида кальция других размеров в партиях указанной грануляции. Большой тепловой эффект реакции разложения карбида создает опасность сильного перегрева. Без отвода тепла при взаимодействии стехиометрического количества карбида кальция и воды реакционная масса разогревается до 700 – 800°С. Разложение карбида при недостаточном охлаждении и особенно в присутствии воздуха может привести к взрыву, поэтому необходимо процесс осуществлять при значительном избытке воды. Для разложения 1 кг карбида необходимо 5 – 20 л воды. Особое внимание необходимо обращать на наличие карбидной пыли в карбиде. Пыль разлагается почти мгновенно; за счет мгновенного разогрева может возникнуть взрыв ацетилена. Поэтому переработка пыли в обычных генераторах, не приспособленных для использования пыли, не допускается. Если содержание пыли значительно, карбид кальция перед загрузкой в генератор просеивают через сито с ячейками диаметром 2 мм. Накопившуюся пыль следует разложить на открытом воздухе в специальном сосуде вместимостью не менее 800 – 1000 л при интенсивном помешивании, одновременно высыпая не более 250 г карбидной пыли. Воду следует менять после разложения пыли в количестве до 100 кг.

Читайте так же:
Духовка электрическая отзывы рейтинг

Карбид кальция транспортируют и хранят в железных барабанах с толщиной стенки не менее 0,51 мм и массой 50 – 130 кг. Боковую поверхность барабанов делают гофрированной для большей жесткости. Карбид кальция интенсивно поглощает влагу даже из воздуха, поэтому при плохой герметичности тары возможно образование ацетилена непосредственно в барабане. Герметичность барабанов следует тщательно проверять; при перевозке барабанов на открытых машинах необходимо покрывать барабаны брезентом. При обнаружении повреждения барабана, карбид должен быть пересыпан в другую герметичную тару.

При обслуживании стационарных генераторов карбид из барабанов пересыпают в специальные приемники-бункеры. Вскрытие барабанов на станции, как правило, механизировано. Для этих целей применяют станки, в которых верхняя крышка вырезается специальным режущим роликом или клиновыми ножами. Ножи и ролик изготовляют из неискрящегося материала. Кроме того, к месту реза подается масло или азот.

Транспортировка карбида кальция в барабанах для стационарных генераторов производительностью свыше 20 м 3 /ч экономически не оправдана, так как раскупорка барабанов занимает значительное время; накапливается большое количество порожней тары, которая вторично не может быть использована; потери карбида за счет его дробления при перекатывании барабанов и последующего отсева от пыли значительны. Поэтому можно считать наиболее перспективным контейнерный способ перевозки и хранения карбида для стационарных установок. При газопламенной обработке алюминия, латуни, свинца и других металлов, имеющих температуру плавления ниже температуры плавления стали, в качестве горючего газа целесообразно применять не ацетилен, а газы – заменители ацетилена или жидкие горючие. Основные физические и тепловые свойства горючих газов приведены в табл. 2.

Тесты для 10 класса

Нажмите, чтобы узнать подробности

Для крах­ма­ла и цел­лю­ло­зы верны сле­ду­ю­щие утвер­жде­ния:

1) имеют общую фор­му­лу

2) имеют оди­на­ко­вую сте­пень по­ли­ме­ри­за­ции

3) яв­ля­ют­ся при­род­ны­ми по­ли­ме­ра­ми

4) всту­па­ют в ре­ак­цию «се­реб­ря­но­го зер­ка­ла»

5) не под­вер­га­ют­ся гид­ро­ли­зу

6) со­сто­ят из остат­ков мо­ле­кул глю­ко­зы

В2. Установите соответствие между названием вещества и его формулой.

Название вещества Формула

3) пропановая кислота В. СН≡СН

С1. На­пи­ши­те урав­не­ния ре­ак­ций, с по­мо­щью ко­то­рых можно осу­ще­ствить сле­ду­ю­щие превращения:

карбид кальцияацетиленэтаналь этановая кислота хлорэтановая кислотааминоуксусная кислота

С2. При сгорании углеводорода массой 11,4 г выделилось 35,2 г углекислого газа и 16,2 г паров воды. Плотность этого вещества по водороду равна 56. Определите молекулярную формулу вещества.

Часть А Выберите только один верный ответ из предложенных ( А1 – А10)

А1. Ука­жи­те пару струк­тур­ных изо­ме­ров.

1) бен­зол и то­лу­ол 3) пен­тен-1 и ме­тил­цик­ло­бу­тан

2) бутен-1 и бу­та­ди­ен-1,3 4) эта­нол и этан­диол-1,2

А2. В молекуле пропена гибридизация орбиталей атомов углерода:

1) sp 2 ; 2) sp 3 ; 3) sp; 4) sp 3 и sp 2 .

А3. К соединениям, имеющим общую формулу СnH2n, относится

1) бензол; 2) гексен; 3) гексан; 4) гексин.

А4. Продуктом присоединения хлороводорода к этену является:

1) 2-хлорпропан; 2) 1-хлорэтан;

3) 2,2-дихлорпропан; 4) 1,1-дихлорэтан.

А5. Про­па­нол-1 вза­и­мо­дей­ству­ет

1) на­три­ем 2) медью 3) гид­рок­си­дом меди(II) 4) рас­тво­ром гид­рок­си­да на­трия

А6. Ук­сус­ная кис­ло­та всту­па­ет в ре­ак­цию с каж­дым из двух ве­ществ:

1) медь и кар­бо­нат на­трия 3) суль­фат меди(II) и аце­таль­де­гид

2) иод и то­лу­ол 4) гид­рок­сид же­ле­за(III) и эта­нол

А7. 2-Ами­но­мас­ля­ная кис­ло­та ре­а­ги­ру­ет с

1) на­три­ем и се­реб­ром 3) уг­ле­кис­лым газом и про­па­ном

2) ме­та­ном и ок­си­дом каль­ция 4) со­ля­ной кис­ло­той и ам­ми­а­ком

А8. Промышленным способом получения углеводородов является:

1) гидрирование; 2) изомеризация; 3) гидролиз; 4) крекинг.

А9. Спирт об­ра­зу­ет­ся в ре­зуль­та­те вза­и­мо­дей­ствия аль­де­ги­да с

А10. В ре­ак­цию по­ли­ме­ри­за­ции может всту­пать

1) бутен-2 2) то­лу­ол 3) цик­ло­гек­сан 4) метан

В1. Выберите три верных ответа из предложенных вариантов.

Глю­ко­за вза­и­мо­дей­ству­ет с

1) кар­бо­на­том каль­ция

2) гид­рок­си­дом меди (II)

4) суль­фа­том на­трия

5) ам­ми­ач­ным рас­тво­ром ок­си­да се­реб­ра (I)

В2. Установить соответствие между функциональной группой и классом вещества:

функциональная группа класс вещества

1) – COOH А. спирты

4) – COH Г. карбоновые кислоты

5) — C=O Д. альдегиды

Запишите реакции, соответствующие схеме:

этанолэтилен1,2-дихлорэтанэтинбензолхлорбензол.

При сгорании углеводорода массой 11,4 г выделилось 35,2 г углекислого газа и 16,2 г паров воды. Плотность этого вещества по водороду равна 56. Определите молекулярную формулу вещества.

Ацетилен, получение, свойства, химические реакции

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.
Читайте так же:
Электродные материалы для сварки

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Технология и режимы сварки

Ацетилено — кислородные смеси применяют для соединения деталей из углеродистых и низколегированных сталей. Например, этот метод широко применяют для создания неразъемных соединений трубопроводов. Например, труб диаметром 159 мм с толщиной стенок не более 8 мм. Но существуют и некоторые ограничения, так соединение таким методом сталей марок 12×2M1, 12×2МФСР недопустимо.

 Сварка при помощи ацетилена

 Пламя при ацетиленовой сварке

Выбор параметров режима

Для приготовления смеси необходимой для соединения металлов используют формулу 1/1,2. При обработке заготовок из легированных сталей сварщик должен отслеживать состояние пламени. В частности, нельзя допускать переизбытка ацетилена.

Расход смеси с формулой кислород/ацетилен составляет 100-130 дм3/час на 1 мм толщины. Мощность пламени регулируют с помощью горелки, которые подбирают в зависимости от используемого материала, его характеристик, толщины и пр

Для выполнения сварки при помощи ацетилена применяют сварочную проволоку. Ее марка должна соответствовать марке сталей свариваемых деталей. Диаметр проволоки определяют в зависимости от толщины свариваемого металла.

Для удобства технологов и непосредственно сварщиков существует множество таблиц, на основании которых можно довольно легко выбрать сварочный режим. Для этого необходимо знать следующие параметры:

  • толщину стенки свариваемых заготовок;
  • вид сварки — левый, правый;

На основании этого можно определить диаметр присадочной проволоки и подобрать расход ацетилена. К примеру, толщина составляет 5-6 мм, для выполнения работ будет использован наконечник № 4. То есть на основании табличных данных диаметр проволоки будет составлять для левой сварки 3,5 мм, для правой 3. Расход ацетилена в таком случае будет составлять при левом способе 60 -780 дм3/час, при правом 650-750 дм3/час.

Сварку выполняют небольшими участками по 10-15 мм. Работа производится в следующей последовательности. На первом этапе выполняют оплавление кромок. После этого выполняют наложение корня шва. По окончании формирования корня, можно продолжать сварку далее. Если толщина заготовок составляет 4 мм то сварку допустимо выполнять в один слой. Если толщина превышает указанную, то необходимо наложить второй. Его укладывают только после того, как выполнен корень шва по всей заданной длине.

Для улучшения качества сварки допускается выполнение предварительного нагрева. То есть будущий сварной стык прогревают с помощью горелки. Если принят за основу такой способ, то прогрев надо выполнять после каждой остановки заново.

Выполнение швов газом может выполняться в любом пространственном положении. Например, при выполнении вертикального шва существуют свои особенности. Так, вертикальный шов должен исполняться снизу вверх.

При выполнении сварочных работ перерывы в работе недопустимы, по крайней мере до окончания всей разделки шва. При остановке в работе горелку необходимо отводить медленно, в противном случае, могут возникнуть дефекты шва — раковины и поры. Интересная особенность существует при сварке трубопроводов, в ней не допустим сквозняк и поэтому концы труб необходимо заглушать.

Карбидный способ

Можно из метана получить ацетилен или в качестве исходного вещества взять карбид кальция. Процесс протекает при обычных условиях. При взаимодействии карбида кальция с водой образуется не только ацетилен, но и гидроксид кальция (гашеная известь). Признаками протекания химического процесса будет выделение газа (шипение), а также изменение окраски раствора при добавлении фенолфталеина на малиновый цвет.

При применении в качестве исходного вещества технического карбида, имеющего различные примеси, в процессе взаимодействия наблюдается неприятный запах. Он объясняется присутствием в продуктах реакции таких ядовитых газообразных веществ, как фосфин, сероводород.

Как осуществляется крекинг

Осуществить превращения «метан — ацетилен» можно несколькими способами. В первом случае природный газ пропускают через предварительно раскаленные электроды. При этом температура может доходить до 1600 °С. После нагрева происходит быстрое охлаждение. Второй способ основан на использовании тепла, которое образуется в результате частичного сгорания ацетилена.

Уравнения реакций «метан — ацетилен» записываются следующим образом:

  1. В I случае: 2СН4 = С2Н2 + 3Н2.
  1. Во II случае: 6СН4 + 4О2 = С2Н2 + 8Н2 + 3СО + СО2 + 3Н2О.

Специалисты не рекомендуют использовать для хранения ацетилена баллоны, оснащенные вентилями из бронзы. Ведь в состав этого сплава входит медь. Так как ацетилен химически активен, он может вступить в реакцию с металлом. В результате этого образуются взрывоопасные соли.

Применение ацетилена при сварке

Ацетилен – основной горючий газ, используемый при газовой сварке, а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.

Получение в промышленности

Как получают ацетилен из метана в промышленных условиях? В настоящее время применяется только один метод – крекинг. В процессе получения ацетилена осуществляется разрыв связей -С-С. Происходит это в присутствии катализаторов и при воздействии достаточно высоких температур. Для получения используется метан – природный газ. Это недорогое и легкодоступное сырье. Именно по этой причине крекинг является наиболее обоснованным методом как в экономическом плане, так и в техническом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector