Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биполярные транзисторы полное описание

Устройство и принцип действия биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режимы работы биполярного транзистора


Режим отсечки
транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками UЭБ и UКБ. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).


Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.


Под действием прямого напряжения UЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора IКp не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому IKp= h21Б Iэ
Величина h21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток IКБО, образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой
Iк =h21БIэ + IКБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток IБ.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
IБ = IБ.рек — IКБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Схемы включения биполярного транзистора

В предыдущей схеме электрическая цепь, образованная источником UЭБ, эмиттером и базой транзистора, называется входной, а цепь, образованная источником UКБ, коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».
На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

KI – коэффициент усиления по току

KU – коэффициент усиления по напряжению

Входная и передаточная характеристики биполярного транзистора

Биполярный транзистор (БТ) — это полупроводниковый прибор с тремя областями с чередующимися типами проводимости и с двумя pn-переходами, позволяющий усиливать электрические сигналы. Для npn-транзисторов средняя р-область — базовая (Б) — имеет проводимость, противоположную крайним n-областям: эмиттерной (Э) и коллекторной (К) (рис. 3.1, а).

При использовании транзистора в режиме усиления управляющий переход база-эмиттер (Б-Э) смещен в прямом направлении, то есть открыт, а управляемый переход база-коллектор (Б-К) — в обратном, то есть закрыт. Электроны из эмиттера через открытый переход инжектируются в область базы. При достаточно малой ширине базы небольшое количество инжектируемых электронов рекомбинирует с дырками в базе, создавая базовый ток Ib.

Читайте так же:
Акб заряжен а стартер еле крутит

Основная часть инжектируемых электронов не успевает рекомбинировать с носителями в области базы и достигает коллекторного перехода. Происходит перенос электрических зарядов из эмиттерной области в коллекторную через базу. Эмиттерный ток Ie равен сумме базового тока Ib (входной) и коллекторного тока Iс (выходной):

Токи Ie, Ib, Ic связаны соотношениями:

где α — коэффициент передачи тока из эмиттера в коллектор, α = 0,95 .. 0,99

где β — основной усилительный параметр транзистора, показывающий во сколько раз ток Ic больше Ib.

Схема включения транзистора, по которой проводится измерение его входной и передаточной характеристик, представлена на рис. 3.1, б.

Для обеспечения рабочего режима транзистора по постоянному току к его базе через токоограничивающий резистор R1 подключается источник постоянного напряжения V1, открывающий переход Б-Э, а к коллектору — источник напряжения V2, запирающий переход Б-К.

Транзистор заданного преподавателем типа, например, 2N2102ON назначается по команде Component > Analog Primitives > Active Devices > NPN.

Входная характеристика отражает зависимость базового (входного) тока транзистора Ib от входного напряжения V1: Ib = f(V1), передаточная — зависимость коллекторного(выходного) тока Ic от входного напряжения V1: Ic = f(V2).

Для построения графиков входной и передаточной характеристик в схеме рис. 3.1, б варьируется ток базы транзистора путем изменения величины R1 в заданных пределах через определенный интервал при нескольких значениях напряжения V1.

Переход в режим построения характеристик осуществляется по команде Analysis > DC.

В открывшемся диалоговом окне задания на расчет (рис. 3.2) в строке Variable 1 в ячейке Name указывается имя варьируемой переменной, а в ячейке Range — диапазон его изменения — максимальное и минимальное значения напряжения. Необходимо включить опцию Stepping.

В нижней части окна указываются имена переменных, откладываемых по горизонтальной (X Expression) и вертикальной (Y Expression) осям графика при построении функций. Для графика входной характеристики это, соответственно, напряжение между базой и эмиттером V1 и ток базы Ib. Для графика передаточной функции это напряжение V1 и ток коллектора Ic. При использовании данного типа транзистора в ячейке X Range для напряжения V1 рекомендуется установить пределы отображения 0,85V, 0,4V. Для токов Ib, Ic в ячейке Y Range рекомендуется установить пределы 2.5mA,0 и 15mA,0 соответственно. Для задания значений варьируемого резистора R1 нажатием клавиши Stepping на верхней панели основного диалогового окна задания на расчет DC Analysis Limits открывается дополнительное окно Stepping (см. рис. 3.3).

В строке Step What (какой шаг) указывается имя варьируемого параметра R1. На последующих строках отмечаются пределы его изменения: From (от), To (к), Step value (шаг).

В графе Step it (шаг это) включается кнопка Yes. Ввод значений варьируемого параметра заканчивается нажатием клавиши ОК.

Построение графиков выполняется при нажатии кнопки RUN (запуск) диалогового окна. Результат изображен на рис. 3.4.

На каждом из построенных графиков (рис. 3.4) по заданному преподавателем значению входного напряжения Vbe1 транзистора и приращению напряжения ΔVbe отмечаются координаты двух точек при использовании режима электронного курсора (нажатием кнопки F8 или выбором пиктограммы ). В нижней части каждого графика указываются следующие значения:

— Координаты маркеров (под заголовком Left – для левого маркера и Right – для правого)

— Разности координат (под заголовком Delta), т.е. приращение токов ΔI и напряжений ΔU

— Отношение приращений (под заголовком Slope — наклон)

Измеренные значения координат заносятся в табл. 3.1.

Входное напряжениеВходная характеристикаПередаточная характеристика
Ток базыТок коллектора
Vbe (мВ)ΔVbe (мВ)Ib (мкА)ΔIb (мкА)Iс (мА)ΔIс (мА)

С помощью полученных данных по приведенным ниже формулам рассчитываются:

— статическое rbe и динамическое rbe входные сопротивления транзистора:

— коэффициенты передачи тока из эмиттера в коллектор α, статический и динамический коэффициенты усиления тока Β и β:

— крутизна S передаточной характеристики в области выбранной рабочей точки (измеряется в Сименсах – См):

Если воспользоваться понятием крутизны входной характеристики транзистора:

То можно сказать, что крутизна передаточной характеристики равна крутизне входной характеристики, помноженной на коэффициент усиления тока.

Устройство и маркировка биполярного транзистора.

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми приборами и с этой статьи начнем разбираться с транзистором. В этой части мы познакомимся с устройством и маркировкой биполярных транзисторов.

Биполярные транзисторы - внешний вид

Полупроводниковые транзисторы бывают двух видов: биполярные и полевые.
В отличие от полевых транзисторов биполярные получили наиболее широкое применение в радиоэлектронике, а чтобы эти транзисторы как-то отличать друг от друга, биполярные принято называть просто — транзисторами.

1. Устройство и обозначение биполярного транзистора.

Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод.

Схематичное изображение биполярного транзистора

Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p.

А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n.

Структуры биполярных транзисторов

А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь.

Получаем из транзистора диод

Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод.

Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора.

Транзистор в виде двух диодов

Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы.

Читайте так же:
Для чего нужна киянка из дерева

область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным.

область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным.

То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает.

Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы.

2. Технология изготовления биполярных транзисторов.

Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.

 Германиевые биполярные транзисторы

Берется кристалл германия и в него вплавляются кусочки индия.
Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.

На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.

Устройство сплавного германиевого транзистора средней мощности

Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.

Германиевые транзисторы средней мощности серии МП37 - МП42

В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.

С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.

Кремниевые транзисторы малой и средней мощности

Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.

Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.

Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.

Устройство диффузионно-сплавного транзистора

При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.

Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.

Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.

3. Маркировка биполярных транзисторов.

На сегодняшний день маркировка транзисторов, согласно которой их различают и выпускают на производствах, состоит из четырех элементов.
Например: ГТ109А, ГТ328, 1Т310В, КТ203Б, КТ817А, 2Т903В.

Первый элемент — буква Г, К, А или цифра 1, 2, 3 – характеризует полупроводниковый материал и температурные условия работы транзистора.

1. Буква Г или цифра 1 присваивается германиевым транзисторам;
2. Буква К или цифра 2 присваивается кремниевым транзисторам;
3. Буква А или цифра 3 присваивается транзисторам, полупроводниковым материалом которых служит арсенид галлия.

Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах: германий – выше 60ºС, а кремний – выше 85ºС.

Второй элемент – буква Т от начального слова «транзистор».

Третий элемент – трехзначное число от 101 до 999 – указывает порядковый заводской номер разработки и назначение транзистора. Эти параметры даны в справочнике по транзисторам.

Четвертый элемент – буква от А до К – указывает разновидность транзисторов данной серии.

Маркировка транзисторов

Однако до сих пор еще можно встретить транзисторы, на которых стоит более ранняя система обозначения, например, П27, П213, П401, П416, МП39 и т.д. Такие транзисторы выпускались еще в 60 — 70-х годах до введения современной маркировки полупроводниковых приборов. Пусть эти транзисторы устарели, но они все еще пользуются популярностью и применяются в радиолюбительских схемах.

В рамках этой части статьи мы рассмотрели лишь общие методы изготовления транзисторных структур, чтобы начинающему радиолюбителю было легче понять внутреннее устройство транзистора.

На этом мы закончим, а в следующей части проведем несколько опытов и на их основе сделаем практические выводы о работе биполярного транзистора.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Схемы Подключения Биполярных Транзисторов

В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером.


Конденсатор Ср является разделительным. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Вольт-амперная характеристика стабилитрона представлена на рис.
Биполярные транзисторы



По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц.

Рисунок 3.

Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ.

Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, — не более
/>
Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ [РадиолюбительTV 42]
Читайте так же:
Диммер для асинхронного двигателя

Характеристики транзистора, включенного по схеме об

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.

Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.

Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

Активный режим транзистора — это нормальный режим работы транзистора.

При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1

Схема с общей базой

При этом входное сопротивление очень мало, а выходное — велико.

Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле: Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. В выходной цепи для сигнала требуется нагрузка. Кроме биполярных существуют униполярные полевые транзисторы, у которых используется лишь один тип носителей — электроны или дырки.

Активный режим транзистора — это нормальный режим работы транзистора. Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется.

Это усиление осуществляется за счет энергии источника питания. Напряжение 0,6В это напряжение на переходе Б—Э, и при расчетах о нем не следует забывать!

Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи. Достоинства каскада по схеме с общим эмиттером: 1. Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема включения биполярного транзистора с общим коллектором


Работа транзистора в ключевом режиме Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме. Эмиттерные повторители схемы с общим коллектором применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Быстродействие БТ зависит от толщины базового слоя БС. Теперь проследим саму работу данной схемы: источник питания 1.

Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки читай одной партии. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками. Рисунок 7. Следовательно, для усилителей постоянного тока нижняя граничная частота усиления равна нулю переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. На рисунке изображена схема работы транзистора в ключевом режиме.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором ОК. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! База является управляющим электродом.
Биполярные транзисторы. Принцип действия.

Характеристики транзистора, включённого по схеме оэ:

Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием.

Благодаря незначительной толщине слоя микроны и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Где транзисторы купить? Транзисторы по праву считаются одним из великих открытий человечества.

При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном — обратное. Его также обозначают как Исходы из выше сказанного транзистор может работать в четырех режимах: Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Ответ может быть да а может и нет. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Схема с общим коллектором ОК Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь.

Схемы включения биполярного транзистора

Ваш email:. Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем рис. Поэтому плотность компоновки элементов в МОП- интегральных схемах значительно выше. Коллектор имеет более положительный потенциал , чем эмиттер Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.

Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Такой режим работы транзистора рассматривался уже давно. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада. Выводы транзистора звонятся как два диода, соединенные в общей точке в области базы транзистора.

Устройство и принцип действия

В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя.

Читайте так же:
Квадрант оптический ко 10 руководство по эксплуатации

Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. Все эти схемы показаны на рисунке 2. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами.
Ключевой режим работы транзистора Схема с общим эмиттером

Исследование биполярного транзистора, включенного с общей базой

Цель работы — снятие и анализ входных и выходных характеристик транзистора, включенного с ОБ; определение по ним h-параметров (рисунок 1).

Пояснения. Биполярные транзисторы являются наиболее универсальными и распространенными полупроводниковыми приборами, предназначенными для усиления и генерирования электрических колебаний, и имеют трехслойную р-n-р- или n-р-n-структуру (рисунок 1.1). Каждый слой имеет вывод, название которого совпадает с названием слоя или области транзистора. Среднюю область транзистора называют базой, а крайние — эмиттером и коллектором. Эти транзисторы получили название биполярных потому, что перенос тока в них осуществляется носителями заряда двух типов: электронами и дырками.

1.jpg2.jpg

Рисунок – 1 Функциональная схема с общей базой. Рисунок – 1.1 Структурная схема транзистора.

Биполярный транзистор имеет два p-n-перехода — эмиттерный П1 и коллекторный П2 — и два запирающих слоя с контактными разностями потенциалов UK1 и UK2, обусловливающих напряженности ЕK1 и EK2 электрических полей в них. Ширина переходов I01 и I02 ширина базовой области IБ.

В зависимости от выполняемых в схеме функций транзистор может работать в трех режимах.

В активном режиме транзистор работает в усилителях, когда требуется усиление электрических сигналов с минимальным искажением из формы. При этом на эмиттерный переход подают внешнее напряжение в прямом направлений, а на коллекторный – в обратном (рисунок 2).

3.jpg

Рисунок – 2 Схема транзистора.

Основные носители эмиттера под действием напряжения Uэб преодолевают эмиттерный переход, а им на встречу движутся основные носители базы, которых значительно меньше, поскольку концентрация примеси в базе мала. Часть дырок эмиттера рекомбинирует с электронами базы вблизи перехода П1, а остальные инжектируются (впрыскиваются) в базовую область.

На пути к коллекторному переходу часть дырок эмиттера рекомбинирует с электронами базы (в реальных транзисторах от 0,1 до 0,001 количества носителей заряди, покинувших эмиттер). Остальные дырки достигают коллекторного перехода, на который подано обратное напряжение UКБ, и с ускорением перебрасываются в коллектор полем перехода П2.

Таким образом, ток Iэ основных носителей, покидающих эмиттер, частично теряется в переходе П1 и базе на рекомбинацию, эти потери составляют ток базы IБ. Остальная его часть достигает коллектора, где рекомбинирует с электронами, поступающими в него из внешней цепи в виде тока iK. Уход дырок из эмиттера восполняется генерацией пар электрон—дырка в эмиттерной области и отводом электронов во внешнюю цепь в виде тока IБ. Расход электронов базы на рекомбинацию компенсируется их притоком в виде тока IБ.

Токи транзистора, работающего в активном режиме, связаны уравнением Iэ == Iк. + IБ, которое можно переписать в приращениях: ΔIэ = ΔIк + Δ IБ. Таким образом, при появлении переменной составляющей входного тока транзистора (в рассматриваемом случае это ток эмиттера) появляется переменная составляющая выходного (коллекторного) тока. Если в цепь коллектора включить резистор, то падение напряжения Uвых на нем окажется значительно больше переменного напряжения UBX входного сигнала, т. е. транзистор усиливает входной сигнал (рисунок 3,а).

В активном режиме транзистор управляется в любой момент процесса усиления, т.е. каждому изменению входного сигнала соответствует изменение входного.

В режиме насыщения (рисунок 3.1,в) на оба перехода транзистора подается прямое напряжение. При этом в базу инженируется потоки основных носителей эмиттера и коллектора и сопротивление промежутка коллектор – эмиттер транзистора резко уменьшается. Режим насыщения используют в тех случаях, когда необходимо уменьшить почти до нуля сопротивление цепи, в которую включен транзистор.

В режиме отсечки (рисунок 3.2,г) оба перехода транзистора закрыты, так как на них подаются обратные, напряжения. В этом режиме транзистор обладает большим сопротивлением. Обратные токи эмиттерного IЭбо и коллекторного IКБо переходов малы (особенно кремниевых транзисторов).

4.jpg

Рисунок – 3 Схема транзистора.

При включении биполярного транзистора в электрическую схему образуется две цепи: управляющая и управляемая. В управляющей цепи действует входной сигнал, который обычно подают на эмиттер или базу. В управляемой цепи (коллекторной или эмиттерной) формируется выходной сигнал, поступающий затем на вход следующего каскада или в нагрузку. Третий электрод транзистора является общим для входной и выходной цепей.

Широко распространены три схемы включения транзисторов: с общей базой общим эмиттерами общим коллектором (рисунок 4). Для расчета транзисторных схем используют два семейства вольт — амперных характеристик: входные и выходные.

5.jpg

Рисунок – 4 Схемы включения транзисторов с ОБ, ОЭ, ОК.

Входные характеристики транзистора показывают зависимости тока входного электрода от напряжения между ним и общим электродом при постоянном напряжении на выходном электроде. Для схемы с общей базой (ОБ) это зависимость тока эмиттера от напряжения между ним и базой при постоянном напряжении на коллекторе: Iэ = 6.jpg(Uэб) при Uкб = const.

Выходные характеристики транзистора показывают зависимость тока выходного электрода от напряжения между ним и общим электродом. Снимают выходные характеристики для ряда постоянных токов входного электрода. Для схемы с ОБ это зависимости тока коллектора от напряжения между ним и базой при постоянных значениях тока эмиттера: Iк=7.jpg(Uкб) при Iэ = const.

В режиме усиления малых сигналов, когда нелинейностью ВАХ можно пренебречь, транзистор, включенный с ОБ, эквивалентно представляют в виде линейного четырёхполюсника (рисунок 5), входные и выходные параметры которого связаны следующими уравнениями:

8.jpg

Рисунок – 5 Транзистор включенный с ОБ.

Физический смысл h -параметров транзистора состоит в следующем:

h11б — входное сопротивление в режиме короткого замыкания на выходе;

h12Б — коэффициент внутренней обратной связи в режиме холостого хода на входе;

h21Б — коэффициент передачи тока в режиме короткого замыкания на выходе;

h22Б — выходная проводимость транзистора в режиме холостого хода на входе.

Рассчитывают h-параметры для схемы с ОБ по формулам

h11Б =ΔUэб/ΔIэ при Uкб = const; (3)

Читайте так же:
Как собрать шуруповерт интерскол

h12Б =ΔUэб/ΔUкб при Iэ = const; (4)

h21Б =ΔIк/ΔIэ при Uкб = const; (5)

h22Б =ΔIк/ΔUкб при Iэ = const. (6)

Аналитический расчет h-параметров сложен и неточен. Намного проще их получают измерением или по ВАХ.

Для определения h12Б на входной характеристике, соответствующей среднему значению коллекторного напряжения, обозначают рабочую точку А (р. y) транзистора (рисунок 6,а), которая задается средними значениями входного тока Iэpy и входного напряжения Uэбpy. Через рабочую точку А (р. y) проводят касательную и строят треугольник BCD. Затем, используя формулу (3), находят

Для определения h12Б необходимо построить две входные характеристики для двух значений напряжения на выходном электроде (рисунок 6,б). Через рабочую точку А (р. т) проводят линию Iэ = const, что соответствует холостому ходу на входе транзистора по переменному току. Точки пересечения характеристик и этой линии проецируют на ось Uэб и определяют ΔUэБ. Затем, используют формулу (4), находят h12Б, приняв ΔUкб = Uкб2-Uкб1.

Для определения h21Б семейство выходных характеристик в области рабочей точки пересекают линией Uкб = const, что соответствует короткому замыканию по переменному току на выходе транзистора (рисунок 6,в). Затем по формуле (5) находят h21Б, графически определив Δ/к и вычислив ΔIэ = Iэ2— Iэ1.

Для определения h22Б (рисунок 6,г) снимают выходную характеристику для тока эмиттера Iэpy в рабочей точке, о затем находят ΔIк и ΔUкб и по формуле (6) рассчитывают h22Б.

9.jpg

Рисунок – 6 Схема h параметров транзистора с ОБ.

ИССЛЕДОВАНИЕ БИПОЛЯРНОГО ТРАНЗИСТОРА, ВКЛЮЧЕННОГО С ОБЩИМ ЭМИТТЕРОМ

Цель работы — снятие и анализ входных и выходных характеристик транзистора, включенного с ОЭ; определение по ним его h-параметров (рисунок 7).

10.jpg

Рисунок – 7 Функциональная схема с общим эмиттером.

Пояснения. Входными характеристиками транзистора при включении с ОЭ являются зависимости тока базы от напряжения между ней и эмиттером при постоянных напряжениях на коллекторе (рисунок 8,а): IБ = 6.jpg(Uбэ) при Uкэ = const.

Выходные характеристики (рисунок 8,б) представляют собой зависимости тока коллектора от напряжения между ним и эмиттером при постоянных токах базы Iк = f(Uкэ) при IБ = const.

12.jpg

Рисунок – 8 Схема транзистора.

В режиме усиления малых сигналов транзистор, включенный с ОЭ, эквивалентно представляют в виде линейного четырехполюсника (рисунок 9), входные и выходные параметры которого связаны следующими уравнениями:

13.jpg

Рисунок – 9 Транзистор включенный с ОЭ.

Δ Iк = h21эΔIБ +h21эUкэ

Физический смысл h-параметров рассчитывают для схемы с ОЭ по формулам:

h11э = ΔUбэ/ΔIБ при Uкэ = const; (7)

h12э = ΔUбэ/ΔUкэ при IБ = const; (8)

h21э = ΔIк/ΔIБ при UКЭ = const; (9)

h22э = ΔIк/ΔUкэ при IБ = const. (10)

Для определения h11э проводят через рабочую точку А (р. т), касательную к входной характеристике, и строят треугольник BCD (рисунок 10,а). Тогда, согласно формуле (7),

h11э = BD/CD = ΔUбэ / ΔIБ.

Для определения h12э выбирают две входные характеристики, снятые при двух значениях напряжений между коллектором и эмиттером (рисунок 10,б), и проводят через А (р. т) линию IБ = const, соответствующую холостому ходу на входе транзистора. Затем точки пересечения этой линии с характеристиками проецируют на ось Uбэ, определяют ΔUкэ =ΔUкэ2 – ΔUкэ1, находят Uбэ и рассчитывают h12э по формуле (8).

Для определения h21э э семейство выходных характеристик вблизи А (р. т) пересекают линией Uкэ = const (рисунок 10,в), что соответствует короткому замыканию на выходе транзистора. Затем по формуле (9) рассчитывают h21э, определив графически ΔIк и ΔIБ как разность IБ2 — IБ1.

Для определения h22э выбирают из семейства выходную характеристику, снятую при IБ.р.т.

Находят приращение тока коллектора ΔIк, вызванное приращением напряжения ΔUкэ на нем при постоянном токе базы (рисунок 10,г), и по формуле (10) рассчитывают h22э.

Рабочая точка транзистора в схеме с ОЭ характеризуется следующими параметрами: IБ р.т., Uбэ.р.т, Iк.р.т и UкЭ р.т.

14.jpg

Рисунок – 10 Схема h параметров транзистора с ОЭ.

ИССЛЕДОВАНИЕ ЭМИТТЕРНОГО ПОВТОРИТЕЛЯ

Цель работы — наблюдение работы эмиттерного повторителя и его исследование в режимах передачи синусоидального и импульсного сигналов (рисунок 11).

15.jpg

Рисунок – 11 Функциональная схема с общим коллектором

16.jpg

Пояснения. В эмиттерных повторителях транзисторы включаются с ОК (рис. 71). При этом все выходное напряжение, снимаемое с резистора R3в цепи эмиттера, действует в управляющей цепи транзистора последовательно входному напряжению и противофазно ему. Следовательно, каскад охвачен отрицательной обратной связью.

Рисунок – 12 Схема транзистора включенный с ОК.

Коэффициент передачи цепи отрицательной обратной связи β= 1,т.е. обратная связь равна 100%. Отсюда коэффициент усиления эмиттерного повторителя по напряжению

Кэп — Коэ/(1+Коэ) (38)

Где Коэ — модуль коэффициента усиления по напряжению схемы с общим эмиттером, сопротивление нагрузки которой равно сопротивлению резистора R3.

Из формулы (38) следует, что эмиттерный повторитель не усиливает напряжение, так как Кэп< 1 (чем больше Коэ,тем Еэпближе к единице), а лишь повторяет входной сигнал по амплитуде с некоторым ослаблением. При этом на выходе эмиттерного повторителя повторяется также фаза входного сигнала.

Эмиттерный повторитель в h21э + 1 раз усиливает ток входного сигнала и в h21э раз — его мощность. Входное сопротивление эмиттерного повторителя велико и без учета сопротивления резисторов базового делителя может быть рассчитано по следующей приближенной формуле:

Верхний предел входного сопротивления эмиттерного повторителя RBll. эп ограничен сопротивлением гк смещенного в обратном направлении коллекторного перехода, которое для современных транзисторов составляет единицы мегаом.

Формула (39) справедлива для h21эRэ ?(0,1÷0,2).

Выходное сопротивление эмиттерного повторителя мало, лежит в пределах от долей ом для мощных транзисторов до десятков ом для маломощных и с достаточной точностью может быть определено по формуле

ЯвЫХ ЭП = 25//э. (40)

Если ток /э выражен в миллиамперах, то сопротивление Явых.эп получают в омах. Формула (40) справедлива при токе Iэ?3 ÷ 5 мА.

Большое входное и малое выходное сопротивление эмиттерных повторителей позволяют использовать их в качестве каскадов, согласующих высокоомный выход одной схемы с низкоомным входом другой или с низкоомной нагрузкой. Кроме того, их применяют для передачи сигналов без изменения формы, амплитуды и фазы, но при значительном усилении тока и мощности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector