Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить lm358 на работоспособность

Как проверить lm358 на работоспособность

Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Генератор синусоидальных сигналов

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина. При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Читайте так же:
Автомобильные ножничные подъемники для гаража

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

по входам + и — поставить делители напряжений состоящих из термосопротивления и резистора МЛТ
(по 100К четыре сопротивления). К минусу питания термосопротивления к плюсу МЛТ, т.е регистрировать разницу температур в гараже и на улице. Запитать схему от элементов 4,5 Вольта. Вопрос . Как будет уплывать точность настройки с понижением напряжения с 4,5 В. до 3,5В.Спасибо. Где почитать чтобы самому дошло.

Интересно, подумал тогда, либо перегрел его когда паял, что вряд ли, либо купил неисправный. Снова пошёл в магазин, купил ещё один, но решил проверить его перед тем как запаивать и о чудо, этот то же неисправный, но теперь его хоть можно вернуть продавцу, судя по всему, у него таких целая партия.

Но разбираться времени не было, пошёл в другой магазин и купил такой же ОУ, но уже за 4$, при покупке договорились, что если он не заработает то, принесу его обратно. Пришёл домой, проверил — работает, запаял — работает. Вывод из этого можно сделать следующий, после покупки детали, перед тем как её запаивать желательно проверить, а продавец, скорее всего, заказал партию этих ОУ с Китая и когда получил, не проверил, это и понятно когда у тебя целый магазин с радиодеталями проверять все устанешь.

К чему всё это писал, после этого поискал эти ОУ на али и когда нашёл их был приятно удивлён, на те деньги, которые потратил у себя в городе чтобы купить исправный ОУ(4$) в Китае можно было купить 5 штук, но они были в корпусе soic8, а имея негативный опыт, описанный выше, конечно же, хотелось их проверить когда они придут. Решить этот вопрос можно было несколькими способами, вытравить макетку, в которую можно было впаивать ОУ каждый раз, с другой стороны, чтобы не впаивать можно было просто прижимать ОУ к плате прищепкой, уже лучше, но есть вариант ещё интереснее, так как часто приходиться иметь дело с soic8, решил поискать ZIF адаптер soic8 – dip8, тогда можно будет собрать схему на breadboard, что значительно ускорит процесс.

В радиолюбительской практике нередко приходится применять ОУ, извлеченные из старых конструкций или печатных плат. Как показывает практика, совсем нелишней оказывается проверка и микросхем, приобретенных на радиорынке.
Первый метод тестирования основан на использовании ОУ как повторителя напряжения. Рассмотрим его на примере простейшего ОУ с внутренней коррекцией LM358N.

Подключение внешних выводов показано на рис. 1 а на рис.2 – схема тестирования. Для установки ОУ используется панелька DIP-8, но можно использовать и DIP-14/I6. Все детали подлаивают к панельке по возможности короткими выводами. Поскольку в одном корпусе LM358N содержится два ОУ, вначале проверяют первый (выводы 1, 2, 3). а затем второй (5, 6, 7). Конденсатор СЗ монтируют непосредственно на панельке. Далее собирают тест-схему рис.2, подают на нее питание. Резистор R2 используется в случае, если в применяемом БП отсутствует регулировка тока защиты.

Читайте так же:
Для чего используют углекислый газ

Если же она есть, то R2 не устанавливают, но ток защиты БП включают на значение тока к.з. 10. 20 мА. К выходу ОУ подключают вольтметр постоянного напряжения PV с пределом 20 В. В ряде случаев элементы R1, CI, C2 можно не устанавливать. После включения переводим SA1 из одного положения в другое и наблюдаем за вольтметром. Если ОУ исправен, то в положении «1» переключателя вольтметр должен показывать почти напряжение питания, а в положении «О» – близкое к нулю.
Второй метод тестирования базируется на основе схемы включения ОУ как компаратора, т.е. сравнения двух напряжений (рис.3). К монтажу этой схемы предъявляются те же требования, что и предыдущей. С помощью R1 устанавливают напряжение в несколько волы, которое контролируют высокоомным вольтметром PV1. Примерно такое же напряжение необходимо установить и резистором R2, контролируемое также высокоомным PV2.

Напряжение на выходе ОУ контролируют вольтметром PV3, причем для исправного ОУ оно будет скачкообразно изменяться от практически питающего до почти нуля при небольшом перемещении движка R1 в ту или другую сторону. Номиналы резисторов R1, R2 можно выбирать любые в диапазоне от 10 кОм до 1 МОм, но они должны быть одинаковыми. Разумеется, совсем необязательно применять в рассмотренной схеме три вольтметра, это может быть один, подключаемый попеременно в три точки.
В заключение отметим, что вторая схема более универсальна, т.к. позволяет испытывать ОУ, не содержащие встроенной коррекции («противовозбудной»), без установки последней внешними элементами.

Arduino.ru

Помогло ? Черканите, если да, чтобы другие читатели поста узнали решение.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Да, что-то забыл написать.

По результату: запитал ОУ от 12 вольт. Насыщение практически ушло. но не совсем. Теперь насыщение ОУ происходит со скоростью примерно 0.03 вольт в час. По сути им можно пренебречь. В устройстве это насыщение не играет никакой роли так как происходит только во время заряда аккумулятора и не влияет на реальный ток заряда, а лишь на отображаемое на дисплее значение. По этому я не стал более углубляться в решение проблемы.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

По результату: запитал ОУ от 12 вольт. Насыщение практически ушло. но не совсем. Теперь насыщение ОУ происходит со скоростью примерно 0.03 вольт в час.

Честно говоря, не вполне понятно откуда оно берется. У вас же напряжение питания теперь существенно выше измеряемого.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Сам не знаю. сто раз все пересмотрел. схему 2 раза спиртом промыл.. проверил «сопли». так и не понял откуда этот дефект

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

wdrakula аватар

Просто не лучшая схема диф. усилителя. Возьмите из даташита, если плату еще не развели. Ту схему, которая с высоким входным Z, на двух усилителях.

Поможет пересчет усилителя на бОльшие резисторы на входе, не 10К, а 100К (как я разгладел 😉 ). Но лучше поменять схему.

Можно еще програмно сделать такую штуку, чтобы сбрасывать накопившийся заряд на землю периодически. Придется ключи всякие дополнительные городить. и пр.

Длительное измерение — это не совсем просто, так как любая мелкая емкость начинает накапливать заряд, которому некуда стечь.

А потенциал на измерительном шунте в импульсе — +12В. Ровно, как и питание ОУ. Замечаете проблемму?

Следите за потенциалами при разработке. Не следует допускать импульсный потенциал больше питания.

В Вашем случае поможет простой делитель напряжения.

И совершенно верно, что при разрядке — все работает, а при заряде — я объяснил. С 12 вольтами питания — все стало лучше, а с делителем, или 15 вольтами питания — будет все совсем хорошо!

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Странно, хотя можно попробовать объяснить.

Первое — на второй схеме не очень видны номиналы, если коэффициент усиления по напряжению у ОУ составляет 100 (как на верхней схеме) то тогда это напряжение смещения, которое по дата составляет до 3мВ и вполне может пересчитаться в 300мВ на выходе и постепенно разгоняться до этого значения (например, от температуры) — наиболее вероятный сценарий, без замены ОУ со смещением ничего не сделать, хотя есть варианты.

Второе — это дрейф резисторов делителя (от той же температуры) — но они греться не должны, разве что расположены рядом с чем-то греющимся (Q3,Q5,Q7).

В любом случае, достигнув определенного значения (не более 300мВ) , рост должен прекратиться.

Можете погреть платку и отдельные элементы феном, чтобы проверить эту гипотезу.
Вообще то, в наихудшем случае получим погрешность в 3Е-3В / 15Е-3Ом = 200 мА, что довольно таки значительная величина, поэтомы надо бы убрать.

Если это смещение ОУ, то должно существенно снизиться, если увеличить шунт в 10 раз (если измеряемый ток это допускает) и уменьшить в 10 раз коэффициент передачи, тогда то же смещение на входе на выходе уменьшится в 10 раз и даст максимальную ошибку в 20 мА, что уже приемлемо.

Читайте так же:
Как отрегулировать карбюратор на китайской бензопиле

Увеличивать номиналы входного резистора опасно, для сохранения передачи придется увеличивать и резистор ОС, а тепловой шум растет пропорционально номиналу, хотя . не все равно опасно.

УКВ приемник прямого усиления на микросхеме LM358

Для приема сигналов радиостанции авиаслужб, работающих на частотах УКВ-диапазона с амплитудной модуляцией, можно использовать приемник прямого усиления.

Главным достоинством такого типа приемников является отсутствие каких-либо генераторов в схеме устройства. При этом отсутствует излучение высокочастотной энергии в приемную антенну. Такой приемник можно использовать даже на борту авиалайнера, не опасаясь создать помехи навигационной аппаратуре.

Принципиальная схема

На рис. 1 приведена принципиальная электрическая схема приемника. Полезный сигнал с антенны WA1 выделяется резонансным контуром L1, С2 и далее детектируется диодом VD1.

Для улучшения детекторной характеристики через диод VD1 протекает в прямом направлении небольшой ток, заданный резистором R1. Выделенная огибающая амп-литудно-модулированного сигнала усиливается двумя каскадами усилителя низкой частоты, выполненными на операционном усилителе DA1.

Усиленный сигнал низкой частоты через разделительный конденсатор С8 излучается динамиком ВА1. Для регулировки уровня громкости служит переменный резистор R3. Так как с ростом частоты все большее влияние на характеристики устройства оказывают его конструктивные особенности и параметры элементов, то приведем описание конкретных элементов схемы.

Принципиальная схема простого самодельного УКВ приемника прямого усиления на микросхеме LM358

Рис. 1. Принципиальная схема простого самодельного УКВ приемника прямого усиления на микросхеме LM358.

Детали

Диод VD1 должен быть обязательно германиевым. При использовании кремниевого диода заметно снижается чувствительность приемника.

Конденсатор настройки С2 на рабочую частоту должен иметь как можно меньшие габариты. Его максимальная емкость может составлять не более 20 пФ, а минимальная — не более 5 пФ.

Катушка индуктивности L1 бескаркасная, намотана посеребренным проводом диаметром 1 мм на оправке диаметром 10 мм и содержит 4. 5 витков. Длина намотки составляет 10 мм.

Микросхема LM358 - внешний вид и расположение выводов

Рис. 2. Микросхема LM358 — внешний вид и расположение выводов.

Контурные катушку и конденсатор можно применить и заводские, взяв их из радиовещательного приемника FM-диапазона. Однако так как станции авиаслужб работают выше по частоте, чем FM-станции, то при использовании таких контуров следует уменьшить индуктивность катушки, например, уменьшив количество витков.

Для получения большего коэффициента усиления величину сопротивления резистора R5 можно уменьшить. При этом для сохранения амплитудно-частотной характеристики в области низких частот следует увеличить емкость конденсатора С7 до 4,7 мкФ.

Приемник собран на небольшой печатной плате, помещенной в маленький пластмассовый корпус. При этом использовалась встроенная петлевая антенна.

Автор статьи — В. Семин. Статья опубликована в РЛ, №5,2003 г.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!
  • Приемные конвертеры для УКВ диапазонов 29 MHz, 145 MHz
  • Громкоговорящий УКВ ЧМ приемник на двух транзисторах КТ315
  • УКВ-FM радиоприемник с кнопочной настройкой (TDA7088T)
  • Перестройка импортных УКВ радиоприемников

Что-то я сомневаюсь, что на детекторный приёмник, пусть даже с хорошим УНЧ, можно поймать сигналы УКВ диапазона. Особенно такие слабые, как переговоры авиаторов. Может сидя в самолёте и можно — х.з., а так — ой, сомневаюсь. Ток смещения через диод, конечно, улучшит его х-ку, но не до микровольтов — точно.

Думаю это скорее всего экспериментальная схема. Работать данные приемники будут если недалеко находится мощная передающая УКВ радиостанция.

А кто вам сказал, что это детекторный приемник? В заголовке же явно сказано «Приемник прямого усиления». Простая схема и детали доступные надо попробовать собрать.

Собрал данную схему, ничего не принимает, только тишина в динамике, до катушки дотрагиваешься шумит, а так ничего. Хот бы уточнили какой диод и что за резисторы R1,R2, толи 10 мегом, толи 1 ом?

Резисторы R1 и R2 — по 10 Мега Ом (10000кОм). Если не можете найти такой номинал то можно собрать из нескольких резисторов, соединив их последовательно, например: 10М = 4,7М + 2,2М + 2,2М + 1М.
Диод должен быт германиевым, об этом сказано в публикации, вот таблица с параметрами германиевых высокочастотных диодов:

Характеристики высокочастотных германиевых диодов

Также постарайтесь чтобы длина соединительных проводников во входной части приемника и колебательном контуре была минимальной, приемник все таки на УКВ диапазон.

На микросхеме DA1 собран усилитель с очень большим коэффициентом усиления, для него нужно хорошее питание, можно сначала питать от батареек, а потом попробовать другие источники.

С антенной также нужно поэкспериментировать — можно попробовать использовать медный провод длиной 70-150см и диаметром примерно 1,5-3мм.

Собрал данный радиоприемник при настройке С2 как некрути шум не меняеться все время однотонный шум вместо R5 впаял 2.2к и С7 4.7мкф тоже самое покуда ничего не споймал L 5 витков на оправе 10мм толщиной провода 1мм

Схема датчика сотрясения на микросхеме LM358N (КР1040УД1А, КР1053УД2)

Среди многочисленных датчиков состояния встречаются всевозможные приборы, поражающие подчас своими конструктивными особенностями.

Однако при разработке датчиков учитываются, как правило, более прозаические параметры, такие как компактность, высокая чувствительность, надежность (большое время наработки до отказа), минимальное наличие механических частей, универсальность в применении, работа в широком диапазоне температур и напряжения питания, отсутствие помех для других узлов устройства, минимальное потребление тока и др.

Читайте так же:
Двигатель от стиральной машины с прямым приводом

Принципиальная схема

Электрическая схема из серии датчиков воздействия — устройство датчика сотрясения — представлена на рис. 1.

Схема датчика сотрясения на микросхеме LM358N

Рис. 1. Электрическая принципиальная схема датчика сотрясения.

Ее особенность в необычном включении микросхемы-компаратора DA1 во взаимодействии с индуктивным датчиком L1. Катушка L1 намотана на круглом пластмассовом каркасе диаметром 8 мм (от резонансных катушек радиоприемника ВЭФ-202 или аналогичных) проводом ПЭЛ-1 диаметром 0,6 мм внавал и содержит 150 витков.

Ферритовый сердечник из каркаса не вынимается и перед первым включением схемы располагается по середине свободного хода внутри каркаса. Напротив катушки L1 на расстоянии 1. 2 мм располагают кусочек феррита круглой или прямоугольной формы размерами 4×9 мм на специальных подвесках из эластичной резины так, чтобы феррит при сотрясении вибрировал на свободном расстоянии до каркаса катушки L1.

Переменный резистор R1, включенный как регулятор-ограничитель тока, позволяет регулировать чувствительность датчика. При верхнем (по схеме) положении движка переменного резистора R1 чувствительность узла максимальная.

При отсутствии механических воздействий на датчик магнитное поле и ток, протекающий через катушку L1, носит постоянный характер и составляет доли микроампер. Оксидный конденсатор С1 не пропускает постоянную составляющую напряжения на вход компаратора (вывод 2 DA1).

Баланс напряжений между инвертированным и неинвертированным входами компаратора (выводы 1 и 2 DA1) не нарушается, поэтому на выходе компаратора (вывод 7 DA1) присутствует низкий уровень напряжения. Индикатор состояния узла— светодиод HL1 не светится и напряжение в базе транзистора VT1 недостаточно для его открывания.

Между общим проводом и выходом (Uвых) присутствует напряжение (разность потенциалов), близкое к напряжению источника питания.

Выходное напряжение для управления устройствами нагрузки (исполнительными элементами и последующими электронными узлами) можно снимать также, используя +U и Uвых.

Тогда в спокойном состоянии датчика напряжение на выходе узла будет стремиться к нулю, а при механическом воздействии принимать значения, близкие по напряжению к напряжению источника питания (12 В).

Метод подключения выходных контактов выбирается самостоятельно при каждом конкретном случае. Если в дополнительных исполнительных узлах необходимости нет, то резистор R10 в цепи коллектора транзистора VT1 заменяют на электромагнитное реле на напряжение 8—12 В с током срабатывания не более 100 мА.

При токе срабатывания реле более 100 мА, учитывая возможно длительный характер работы реле во включенном состоянии, потребуется заменить транзистор VT1, выполняющий роль усилителя тока, более мощным, например, любым из серии КТ815.

При незначительном сотрясении датчика (ферритового сердечника) вблизи катушки L1 в ней кратковременно создается ЭДС электромагнитной индукции и возникает ток и напряжение в несколько десятков микровольт. Скачок напряжения (импульс) беспрепятственно пропускает оксидный конденсатор С1 и через ограничительный резистор R2 он попадает на вход компаратора DA1.

Компенсационные цепочки в разных плечах компаратора (состоящие из элементов VD1, R5, R6 и VD4, R12) настроены таким образом, что даже такого минимального сигнала, вносящего дисбаланс напряжения на входах микросхемы, оказывается достаточно для срабатывания внутренней схемы сравнения напряжений и появления на выходе компаратора высокого уровня. Напряжение высокого уровня на выводе 7 DA1 включает светодиод HL1, сигнализирующий о воздействии на датчик, проходит через ограничительный резистор R8, детектируется диодом VD3 и через ограничительный резистор

R9 поступает в базу транзистора VT1. В момент появления напряжения на выводе 7 микросхемы DA1 заряжается оксидный конденсатор С4. Он включен в схему для того, чтобы обеспечить плавную задержку выключения узла (на 2— 3 сек), иначе включение нагрузки будет напоминать дребезг контактов и носить хаотичный характер.

Благодаря наличию оксидного конденсатора С4 транзистор VT1, открывшись от импульса напряжения, закроется только через 2— 3 сек после окончания управляющего импульса.

Если емкость данного конденсатора увеличить до 50 мкФ, задержка выключения узла может составить единицы минут, что может оказаться полезным при определенных задачах, стоящих перед радиолюбителем-конструктором; например, такая задержка будет уместна, если реле, включенное вместо резистора R10, в свою очередь будет включать охранную сирену.

Поступившее в базу транзистора VT1 напряжение высокого уровня открывает его и изменяет состояние выхода узла: между положительным выводом источника питания и контактом Uвых теперь присутствует напряжение источника питания, а между общим проводом и точкой Uвых соответственно напряжение равно нулю.

В налаживании узел не нуждается. Выпрямительный диод VD2 и ограничительный резистор R7 защищают микросхему от перенапряжения источника питания и обратного случайного включения Uпит. Оксидный конденсатор СЗ сглаживает пульсации напряжения.

При заведомо исправном и стабилизированном источнике питания, а также при питании данного электронного узла от батарей (аккумуляторов) элементы С3, R7, VD2 можно из схемы исключить, т. к. устройство работоспособно в диапазоне напряжения питания +7. +16 В. Ток потребления в режиме покоя не превышает 5 мА.

Однако при использовании устройства в автомобиле и в сочетании с нестабилизирован-ными источниками питания, данные элементы выполняют защитную роль и позволяют применять устройство как элемент охраны — датчик сотрясения (удара) в автомобилях.

Читайте так же:
Аппарат для выжигания узор

Элементы устройства компактно монтируются в пластмассовом корпусе и жестко прикрепляются к контролируемой поверхности. В этом может способствовать моментальный клей или липучка.

Возможности использования рекомендуемого датчика практически не ограничены. Он может являться прототипом датчика удара в автомобилях, работать в составе охранной сигнализации — тогда корпус датчика закрепляют на косяке (дверной коробке) или двери охраняемого помещения и в других аналогичных случаях, когда требуется простой, чувствительный и надежный узел контроля сотрясений и ударов.

Кажущаяся сложность в изготовлении датчика и катушки L1 не более чем миф. Практика испытаний устройства показала, что даже при удалении феррита от каркаса L1 на расстоянии до 5 мм датчик уверенно срабатывает от сотрясения и качения феррита вблизи катушки.

Это достигается высокой чувствительностью компаратора на микросхеме LM358N. Кроме указанной на схеме микросхемы можно применить ее полные аналоги LM358, С358С, НА 17358, а также полные аналоги этого популярного компаратора, выпускающиеся другими фирмами. Отечественные микросхемы аналоги компаратора К1401УД5А—К1401УД5Б, К544УД8А—К544УД8Б, КР1040УД1А, КР1053УД2(А).

Детали и конструкция

При применении микросхемы К544УД8А—К544УД8Б чувствительность узла несколько понизится и придется изменить при подключении выводы микросхемы. Кроме того, в качестве феррита (прямоугольной формы) можно использовать обыкновенный кусочек магнита.

Транзистор VT1 — любой из серии КТ503 или аналогичный. Выпрямительный диод VD2 заменяют на КД213, КД105, Д202 или аналогичные по электрическим характеристикам с любым буквенным индексом. Остальные диоды типа КД521, КД522, Д311, Д220 с любым буквенным индексом.

Переменный резистор R1 типа СПО-1, СПЗ-З0В, СПЗ-12В или подстроечный типа СП5-28В, СПЗ-1 ВБ (оба многооборотные). Главное— при выборе типа этих резисторов в том, чтобы они имели линейную характеристику изменения сопротивления. При необходимости достижения узлом максимальной и нерегулируемой чувствительности данный резистор из схемы просто исключают, а средний вывод, показанный на схеме, соединяют с верхним (по схеме) выводом катушки L1.

Ограничительный резистор R7 типа МЛТ-0,5. Все остальные постоянные резисторы типа МЛТ-0,25. Оксидные конденсаторы фирмы Hitano, ESP, их аналоги, или отечественные типа К50-29, К50-35.

Индикаторный светодиод типа L63SRC, КИПД14А, КИПД-36, L1503SRC-C, КИПД41Б1-М или другие аналогичные с током до 10 мА.

В случае замены резистора R10 на слаботочное электромагнитное реле, рекомендации к выбору последнего такие: FRS10С-ОЗ, TRU-12VDC-SB-SL, ТТІ TRD-9VDC-FB-CL, Relpol RM85-2011-35-1012, РЭС-22 (исполнение РФ.4.523.023-01) или аналогичное.

При выборе реле следует учитывать ток и напряжение коммутации. Все указанные здесь типы реле коммутируют ток до 3 А при напряжении до 250 В.

Микросхема LM358Dsmd

Микросхема LM358Dsmd

Отзывов: 3Отзывов: 3 | Написать отзыв

Микросхема LM358Dsmd

Описание
Производитель ST Microelectronics
Корпус SO8
Технические параметры
Количество каналов 2
Напряжение питания,В 3…32
Частота, МГц 1
Напряжение смещения, мВ 2
Температурный диапазон, C 0…70
Тип корпуса SO8

Написать отзыв

Зарегистрируйся, оставляй отзывы о товаре, зарабатывай бонусы!

Ваш отзыв: Внимание: HTML не поддерживается! Используйте обычный текст.

Оценка: Плохо Хорошо

Микросхема LM358N (UTC)

Отзывов: 1

Микросхема LM386(N,D) (SC386P)

Отзывов: 3

Микросхема LM3886TF

Отзывов: 1

Микросхема LM3914N (LM3915N)

Отзывов: 0

Микросхема LM358Dsmd

Ежедневная отправка заказов производится из г. Каменск-Шахтинский, Ростовской области по фиксированному тарифу (количество товаров не влияет на стоимость доставки). При общей сумме заказа более 2000 рублей — доставка почтой России за счет магазина!

Гибкая система оплаты банковскими картами (Visa, Mastercard, Maestro, МИР) любого банка, через интернет-банкинг (Промсвязьбанк, Альфа-Банк, ВТБ24, Банк Русский Стандарт), электронными деньгами (Webmoney, Яндекс деньги, Qiwi), наличными в салонах связи (Евросеть, Связной) — позволит вам оплатить заказ + стоимость доставки он-лайн без всяких комиссий.

После получения он-лайн оплаты, мы предоставим Вам электронный чек ОФД – который приравнен к обычному бумажному чеку и может быть использован Вами для любых целей – для отчета в бухгалтерии или разрешения спорных ситуаций, а после комплектации и отправки заказа (как правило 1-2 суток) – предоставим ссылку для отслеживания местонахождения заказа на электронную почту и продублируем смс сообщением. Вы в любой момент можете узнать – где именно находится заказ!

Доставка осуществляется почтой России до Вашего почтового отделения или Транспортной Компанией до точки самовывоза (ПВЗ Транспортой Компании) либо курьером до Двери в кротчайшие сроки — от 3 до 8 суток (в зависимости от региона получателя и способа доставки).

Доставка в Казахстан и Белоруссию осуществляется только транспортной компанией! При этом он-лайн оплата может производится банковскими картами в национальной валюте с прямой конвертацией в Российские рубли без всяких комиссий.

В настоящее время жесткой конкуренции на стоимость — скорость доставки заказов — Обратите внимание на способ доставки Транспортной Компанией. т.к. Стоимость ее доставки уже сравнялась с Почтой России, зато скорость выполнения работы, специальные логистические центры и отсутствие очередей, а так же лояльное отношение к клиенту — несоизмеримо выше!

Даже если по какой-то причине Вам не удалось оплатить заказ, мы отправим на Ваш электронный ящик письмо с уведомлением о заказе и ссылкой его для оплаты.

Все неоплаченные в течении 5 банковских дней заказы анулируются.

*Изображение для продукта Микросхема LM358Dsmd служит только для ознакомления и не предназначено для использования в конструкторской документации.

**Цены и наличие товара на сайте и в розничных магазинах "Radio-Sale" могут отличаться.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector