Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пусковой конденсатор для электродвигателя

Пусковой конденсатор для электродвигателя

Пусковой конденсатор – устройство, необходимое для стабильной работы электродвигателя. Он начинает работать непосредственно в момент старта электромотора, так как именно в это время на двигатель действует наибольшая нагрузка. Как только двигатель выходит на рабочую частоту, пусковой конденсатор отключается и больше не используется до следующего запуска. Он отвечает только за запуск двигателя под нагрузкой, также он обеспечивает сдвиг фаз меж пусковой и рабочей обмоткой.

Конструкция и назначение пускового конденсатора

Конденсатор представляет собой устройство, способное накапливать электрический заряд: он состоит из двух проводящих пластик, расположенных на небольшом отдалении друг от друга и разделенных диэлектрическим материалов. Все конденсаторы обладают несколькими характерными особенностями:

  • Специальный материал выполняет функции диэлектрика. Для конденсаторов пускового типа эту роль часто играет оксидная пленка, которая наносится на электрод.
  • Полярные накопители отличаются небольшими габаритными размерами, которые сочетаются с внушительной емкостью.
  • Неполярные конденсаторы больше по размеру, однако их можно устанавливать в цепь, не учитывая полярность.

Пусковой конденсатор двигателя выполняет несколько функций: он повышает показатели магнитного потока и пусковой момент, в результате работоспособность электромотора улучшается. Если этого элемента нет в системе, срок эксплуатации двигателя значительно сокращается, в его работе намного раньше возникнут различные неполадки.

Схема подключения двигателя с пусковым конденсатором

Пусковой конденсатор для электродвигателя играет важную защитную роль, поэтому он является обязательным компонентом схемы. При сборке цепи питания необходимо учитывать несколько обязательных моментов:

  • В цепи присутствует рабочий конденсатор, он используется в течение всего времени работы электродвигателя.
  • Перед рабочим конденсатором предусматривается разветвление, идущее на выключатель. Он отвечает запуск электродвигателя.
  • Пусковой конденсатор подключается к цепи после конденсатора. При подаче сигнала он успевает начать работать в течение нескольких секунд, в то время как ротор начинает набирать обороты.
  • Электрическая цепь от обоих конденсаторов идет к электромотору.

Таким образом пусковой и рабочий конденсатор подключаются к цепи параллельно, но первый работает только несколько секунд до выхода двигателя на рабочий уровень показателей, а второй – в течение всего времени эксплуатации двигателя.

Помощь при выборе пусковых конденсаторов

АО «Электроинтер» поможет подобрать и купить пусковой конденсатор подходящей емкости. Сотрудники компании предоставят подробную информацию по работе электрической цепи и помогут определиться с выбором оборудования. Получите необходимые консультации специалистов, чтобы обеспечить стабильную работу двигателя и защитить его от износа.

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

ps226

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора к асинхронному двигателю

Схема подключения пускового конденсатора к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Читайте так же:
Литейные магниевые сплавы сплавы маркировка

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяетсяВ цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

Схема с рабочим и пусковоым конденсаторами

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Отличия пусковых конденсаторов на 220В от рабочих

Как используется рабочий конденсатор

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз. В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Рабочий конденсатор

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Виды пусковых конденсаторов

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

Читайте так же:
Качественный духовой шкаф электрический встраиваемый

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Пусковой конденсатор

Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

Конденсаторы для «чайников»

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Читайте так же:
Для чего нужна шкала нониуса

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Читайте так же:
Короб для укладки проводов

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

Как подобрать пусковые конденсаторы для электродвигателей

Трехфазные электродвигатели асинхронного типа очень распространены на сегодняшний день, поэтому у многих людей возникает необходимость их подключения к различному оборудованию при проведении работ в гараже или на дачном участке.

Этот процесс может сопровождаться проблемами, поскольку многие источники питания рассчитаны на однофазное напряжение. Решить этот вопрос можно при задействовании специальных схем, которые подразумевают наличие рабочего и пускового конденсатора.

Пусковые конденсаторы

Как подобрать конденсатор

Первоначально приобретается рабочий конденсатор, его выбор осуществляется с учетом номинального показателя электрического тока стартера и показателей напряжения в однофазной сети. При использовании трехфазного двигателя, обладающего мощностью около 100 Вт, обычно хватает рабочего конденсатора с емкостью 7 мкФ.

Читайте так же:
Электропечь для отопления дома

В ряде случаяев подобных мер бывает недостаточно и в схему требуется добавить пусковой конденсатор, необходимость в нем обычно возникает при чрезмерных нагрузках на валу в момент включения.

Его работа и функции будут заключаться в следующем:

Рядо пусковых конденсаторов

При использовании трехфазного двигателя, обладающего мощностью около 100 Вт, обычно хватает рабочего конденсатора с емкостью 7 мкФ

Хозяин оборудования должен помнить о необходимости отключения пусковых конденсаторов, в противном случае возникает серьезный риск перегрева асинхронного электродвигателя из-за значительного перекоса тока в фазах.

Основным критерием выбора пускового конденсатора является его емкость, она должна минимум в 2-3 раза превосходить аналогичный параметр рабочего конденсатора. Если расчет был произведен верно, то в момент запуска двигатель достигает номинальных показателей и никаких проблем не наблюдается.

При осуществлении выбора также необходимо обратить внимание на следующие моменты:

  1. Можно использовать бумажные или электролитические конденсаторы. Наиболее распространен первый вариант, хотя он и обладает значимым недостатком, которые заключается в сочетании крупных габаритов и незначительной емкости, что создает необходимость задействования большого количества устройств при высокой мощности двигателя. Из-за этого многие люди обращаются к электролитическим устройствам, которые требуют обязательного добавления в схему резисторов и диодов. Подобная практика считается нежелательной, поскольку всегда имеется риск, что диоды не справятся со своей задачей, что может привести к негативным и опасным последствиям, в том числе перегреву оборудования и взрывов пускового конденсатора. При невозможности или нежелании пользоваться бумажными моделями, можно обратить к более современному варианту: пуском моделям, оснащенными улучшенным металлизированным покрытием. Большинство из них предназначено для работы с напряжением, показатель которого варьируется от 400 до 450 В.
  2. Показатель рабочего напряжения является еще одним важным критерием выбора выпрямителей трехфазного двигателя. Многие люди ошибочно приобретают устройства с очень высокими показателями при отсутствии необходимости в подобном ресурсе, это приводит к увеличению финансовых трат на покупку и выделении большого количества места под установку габаритного оборудования. При этом важно проследить, чтобы показатель напряжения был не меньше, чем в электросети, в противном случае выбранная модель не сможет исправно функционировать и очень быстро выйдет из строя. Для осуществления оптимального выбора необходимо произвести следующий расчет: умножить фактическое напряжение, присутствующее в сети, на коэффициент 1,15. Благодаря этому будет получить показатель необходимого напряжения, но он не должен быть меньше 300В.

В большинстве случаев для описанных целей хорошо подходят бумажные модели, оснащенные защитным корпусом, изготовленным из стали. Они фактически всегда имеют прямоугольную форму, на корпусе обычно указываются основные рабочие параметры.

Подключение пускового конденсатора к электродвигателю

При реализации подобных схем на практике и подключении пусковых устройств необходимо будет проделать следующие действия:

  1. Первоначально проверить пусковой конденсатор при помощи мультиметра, чтобы убедиться в его работоспособности.
  2. Выбрать наиболее подходящую схему подключения, здесь владельцу оборудования предоставляется полная свобода. Обмоточные и конденсаторные выводы у большинства двигателей находятся в клеммной коробке.
  3. В некоторых ситуациях возникает необходимость в доработке имеющейся схемы, при этом необходимо самостоятельно провести перерасчет основных показателей по уже рассмотренным схемам.

Пусковые конденсаторы металлического цвета

Модели

Многие модели подобных устройств отличаются не показателем емкости, а типом конструкции. Ниже приведены примеры некоторых приспособлений, которые подходят для подключения электродвигателей:

CBB-60 является полипропиленовым устройством, которое оснащено металлизированным покрытием. Это наиболее современный и оптимальный вариант, его стоимость составляет около 300 рублей.

CBB-60

HTC пленочного типа обладают такой же емкостью, что и СВВ-60, но стоят они обычно не дороже 200 рублей.

HTC

Э92 представляет собой аналог российского производства с идентичным показателем емкости, при этом такое устройство является бюджетным вариантом, приобрести который можно по цене 100-150 рублей.

Э92

Блиц-советы

Подводя итоги, можно дать следующие рекомендации людям, которые планируют подключение двигателей:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector