Что такое форсаж дуги на сварочном инверторе
Что такое форсаж дуги на сварочном инверторе
Работать с тонким металлом на низких токах сложно. Даже опытные сварщики не застрахованы от разрыва дуги, залипания электродов, неровных швов. Когда дело имеешь с аппаратом, оснащенным опцией «Arcforce», таких трудностей не возникает. Скачки напряжения, возникающие при залипании электрода, сглаживаются. По сути, форсаж дуги на инверторе – это стабилизатор силы тока, работающий в автоматическом режиме. Он помогает поддерживать разогрев присадки, облегчает сварку швов, поддерживает дугу в одном режиме. Для начинающих такая опция – находка.
Для чего нужен форсаж дуги на сварочном инверторе
В отличие от «горячего старта» он поддерживает стабильный ток не только во время розжига электрода, но и весь сварочный процесс. Принцип работы Arc force заключается в увеличении выходного тока во время короткого замыкания. Когда между электродом и свариваемой поверхностью появляется капелька металла, велик риск залипания электрода, он притягивается к свариваемой поверхности. Аппарат мгновенно добавляет ампераж на 1/3 от рабочего напряжения, позволяя капле расплавиться, а затем возвращает его к прежним параметрам. Что такое форсаж дуги сварочного инвертора с точки зрения функциональности: высокоскоростной регулятор ампеража, стабилизирующий рабочие параметры аппарата. Функции форсажа:
- мгновенно увеличивать силу тока, когда она снижается до критического уровня, возрастает риск короткого замыкания, прикипания электрода;
- уменьшать, когда электродуга мощная, защищать от прожогов тонких деталей;
- обеспечивать стабильную работу.
Как настроить форсаж сварочной дуги
Инверторы с режимом форсаж двух видов: с регулятором Arc force и без него. Для постоянной работы лучше выбирать модели, где есть регулировка. Это профессиональное универсальное оборудование. Пользоваться таким удобнее. Обычно шкала градируется в процентах, реже – в единицах. Нужное значение выбирается опытным путем. Допустим, работая на минимальных токах около 50 ампер, можно поставить увеличите на 30%. Такой добавки хватит для разогрева прилипшей капли. Но если варить 4-мм электродом, нужно выставлять 160 ампер. Что такое увеличение на 30% при больших значения выходного тока? Оно не повлияет на процесс разогрева. Для толстых деталей форсаж дуги выставляют на максимальные значения. При необходимости режим Arcforce отключается, для этого достаточно поставить ручку регулятора на ноль.
Ручка настройки позволяет выбрать уровень стабилизации под тип электродов:
- работая присадкой с рутиловым покрытием, регулятор устанавливают в нижних пределах: от 10 до 30%.;
- для стандартного электрода оптимальное значение 50%;
- если покрытие целлюлозное, можно выкручивать ручку на максимум: допустимо увеличение на 100%.
Модели с автоматическим или фиксируемым режимом форсажа созданы для бытовых условий. Производители сразу выставляют какое-то небольшое значение добавочного тока, на который происходит увеличение при коротком замыкании. Обычно это 20 ампер. Для сварки тонких и средних заготовок 2-мм присадкой этого хватит. Бытовые сварочники запитываются от розеток, поэтому для высоких токов они не предназначены.
Сварочный аппарат работает стабильно, когда он с функцией режима «Форсаж». Снижается риск:
- залипания;
- прожогов;
- угасания дуги.
Постоянство параметров важно во время сварки тонкого металла на минимальных значениях тока. Форсаж создает условия для спокойной работы во время проварки корня швов, такая операция необходима при монтаже кожухов. Специалисты с опытом по достоинству оценили эту разработку.
Заключение
Сварочный аппарат с режимом Arc force – отличный выбор для начинающих, с ним получаются ровные швы, не бывает проблем с залипанием, электродуга остается равномерной в любых условиях. При выборе оборудования для работы с разным металлом лучше выбирать регулируемый сварочник, чтобы была возможность подобрать нужный режим стабилизации рабочих параметров под размер заготовок и электрода.
Инвертор на сварочный полуавтомат 250А
Купил я как то свой полуавтомат трансформаторный. Ну думал мне его хватит на долго, так как я планировал его для сварки и ремонта кузовов автомобиля. В итоге я был разочарован тем, что тонкий металл он просто сжигал в момент касания сварочной проволоки о свариваемую поверхность. А толстый металл примерно 4 мм толщины он просто не проваривал как следует.
В результате этого мне хотелось просто выкинуть его. Обратно в магазин его не понесешь, так как прошло много времени, да и работа у меня не одна. Вот и было решено собрать инвертор для моего девайса чтобы избавиться от трансформатора который работал не понятно как.
На рисунке собственно сама схема. Эта схема была взята с основы сварочного инвертора на 250 ампера, который разработал Евгений Родиков. За что ему спасибо.
Правда пришлось мне изрядно повозиться с этой схемой, чтобы обычный сварочный инвертор у которого мягкая ВАХ (вольтамперная характеристика) стала жесткой и чтобы была обратная связь по напряжению и можно было регулировать с 7 вольтах до 25 вольт. Так как на полуавтомате не нужно регулировать ток ему надо менять напряжение. Что мною и было выполнено.
Для начала нам надо собрать блок питания который будет питать шим генератор и драйвера ключей.
Вот собственно и схема блока питания, она не сложная и думаю не буду вдаваться в подробности и так все понятно.
Принцип работы инвертора
Работа инвертора заключается в следующем. Из сети 220 вольт поступает на диодный мост и выпрямляется потом происходит зарядка конденсаторов большой емкости через токоограничивающий резистор R11.Если бы не резистор то произошел бы сильный бах из за чего выйдет из строя диодный мост. Когда конденсаторы зарядились, таймер на VT1,C6,R9,VD7 включает реле К1 тем самым шунтирует токоограничительный резистор R11 и напряжение в это время на конденсаторах нарастает до 310 вольта. и в это же время включается реле К2 который размыкает цепь резистора R10, который блокирует работу ШИМ генератора собранного на микросхеме UC3845. Сигнал с 6 ноги ШИМ генератора поступает на оптроны через резисторы R12,R13. Далее проходя через оптроны HCPL3120 на драйвера управления силовыми IGBT транзисторами которые запускают силовой трансформатор. после трансформатора выходит большой ток высокой частоты и поступает на диоды тем самым выпрямляется. Контроль напряжения и тока выполнены на оптроне PC817 и токовом датчике построенный на ферритовом кольце через который пропущен провод силового трансформатора.
Начало сборки работы инвертора
Саму сборку можно начинать как угодно. Я лично начинал собирать с самого блока питания,который должен питать шим генератор и драйвера ключей. Проверив работоспособность блока питания она у меня заработала без каких либо доработок и настроек. Следующим этапом я собирал таймер который должен блокировать шим генератор и шунтировать токоограничительный резистор R11, убедившись в его работе, он должен включать реле К1 и К2 в течении времени от 5 секунд до 15 секунд. Если таймер срабатывает быстрее чем нужно то надо увеличить емкость конденсатора С6. После чего я начал сборку шим генератора и драйвера силовых ключей в шим генераторе есть один недочет с резисторами R7 он должен иметь сопротивление 680 Ома R8 1,8ома и конденсатор C5 510p C3 2200p также убедившийся в правильной сборке выставил первоначальную частоту в 50 кГц с помощью резистора R1. При этом сигнал формированный шим генератором должен быть строго прямоугольным 50/50 и ни каких всплесков и выбросов из краев прямоугольников показанные на осциллограмме осциллографа. После я собрал силовые ключи и подав напряжение минус 310 вольт на нижние силовые ключи. плюс верхних силовых ключей я подал питание плюс 310 вольт через лампочку 220 вольт 200 ватт на самой схеме не показано, но надо в питание силовых ключей плюс и минус 310 вольта добавить конденсаторы 0,15мкФ х 1000 вольт 14 штук. это нужно для того чтобы выбросы который будет создавать трансформатор уходили в цепь питания силовых ключей ликвидируя помехи в сети 220 вольта. После чего я начал собирать силовой трансформатор а начиналось у меня все так. Я не знаю какой материал феррита намотал пробную обмотку например 12 витков из медной проволоки 0,7 мм диаметром покрытый лаком включил его между плечами силовых ключей и запустил схему убедившийся что лампочка горит в пол накала чуть чуть подождав примерно 5 или 10 минут выключил схему из розетки дав разрядиться фильтрующим конденсаторам чтобы током не стукнуло проверил сам сердечник силового транса он не должен нагреваться. Если он нагрелся я увеличил число обмоток и таким образом я дошел до 18 витков. И так я намотал трансформатор с расчетом сечений которые написаны на схеме.
Настройка и первый запуск инвертора
Перед настройкой и первым пуском еще раз проверяем в правильной сборке. Убеждаемся в правильной фазировке силового трансформатора и датчика тока на маленьком кольце. Датчик тока обычно подбирается количество витков провода чем больше витков тем больше выходной ток, но не стоит пренебрегать из за того, что можно перегрузить силовые ключи и они запросто могут выйти из строя. В этом случае если не знать материал феррита лучше всего начать с 67 витков и постепенно увеличивать количество витков до достаточной жесткости дуги при сварке. Например у меня вышло 80 витков, при этом у меня не грузится сеть, не греются силовые ключи и естественно нет шума от силового трансформатора и дросселя на выходе.
И так начинаем первый пуск и настройку при лампочке включенной как описано выше при этом куча конденсаторов из 14 штук по 0,15 мкФ должны быть включены обязательно на питание ключей плюс и минус 310 вольт. включаем осциллограф на эмиттер и коллектор нижнего плеча силовых ключей. Перед этим мы не цепляем оптрон обратной связи по напряжению, временно оставляем висеть на воздухе на осциллографе должно быть прямоугольный сигнал частоты мы берем отвертку и крутим резистор R1 до появления не большого загиба на нижнем углу прямоугольника. Крутить в сторону уменьшения частоты. Это будет говорить о перенасыщении сердечника силового трансформатора. При загибе в полученной частоте записать его и посчитать рабочую частоту сердечника силового трансформатора. Например частота перенасыщения 30 кГц считаем так 30 делим на 2 получаем 15 полученное число прибавляем к частоте перенасыщения 30 плюс 15 получаем 45. 45 кГц это наша рабочая частота. При этом лампочка должна светиться почти не заметно тускло. ток потребления не должна превышать на полном холостом ходу 300 мА обычно 150 мА. смотреть осциллограф чтобы не было всплесков напряжения выше 400 вольта обычно 320 вольт. Как все будет готово цепляем к лампочке чайник или нагреватель или утюг в 2000 ватт. На выход цепляем провод приличного сечения например от 5 квадратов 2 метра делаем короткое замыкание при этом лампочка не должна гореть на всю яркость она должна светиться чуть больше половины накала. Если она светится на всю яркость то нужно еще раз проверить датчик тока в фазировке просто пропустить провод с другой стороны. В крайних мерах уменьшить число витков на датчике тока. После того как будет все готово теперь плюс питание 310 вольт пустить на прямую без лампочки и нагревателя 2000 ватт. Не забываем про охлаждения силовых ключей радиатор с вентилятором лучше всего подходит радиатор от компьютера старого образца интел пентиум или амд атом. Силовые ключи должны быть вкручены на радиатор без слюдяной прокладки и через тонкий слой термопроводящую пасту КПТ8, чтобы обеспечить максимальную эффективность охлаждения. Радиатор надо делать отдельно от верхнего и нижнего плеча полумоста. Диоды снабберов и диоды включенные между питанием и трансформаторе разместить на тех же радиаторах, что и ключи но уже через слюдяную прокладку да бы избежать короткого замыкания. Все конденсаторы на шим генераторе должны быть именно пленочные с надписью NPF этим вы избежите не приятные моменты при погодных условиях. Конденсаторы на снабберах и на выходных диодах должны быть строго только типа К78-2 или СВВ81 ни какой любой мусор туда не совать, так как снабберы выполняют важную роль в этой системе и они поглощают всю негативную энергию который создает силовой трансформатор.
Кнопку пуска полуавтомата который находится на рукаве горелки нужно сделать в разрыв термодатчика перегрева.И еще чуть не забыл на выходе силового трансформатора когда настраиваете всю систему без оптрона обратной связи конденсатор 220мкФ тоже должен быть временно снят, чтобы не превысить выходное напряжение и при этом на выходе при таком раскладе напряжение должно быть не больше 55 вольта если оно достигает 100 вольта или больше желательно уменьшить количество витков например отмотать 2 витка, чтобы получить нужное нам напряжение после того можно ставить конденсатор и оптрон обратной связи. Резистор R55 — это регулятор напряжения R56 резистор ограничения максимального напряжения его лучше припаивать в плате рядом где оптрон чтобы избежать скачка при обрыве регулятора и подбирать его в сторону увеличения сопротивления до нужного максимального тока я например сделал до 27 вольта. Резистор R57 подстроечный под отвертку для подстройки минимального напряжения например 7 вольт.
Выбираем сварочный аппарат
Любительский
Сварочные аппараты: виды и методы сварки
Что такое электросварка и зачем нужен сварочный аппарат – сегодня понимает каждый школьник. А вот какие процессы скрываются за сиянием электрической дуги – известно не каждому. Стоит остановиться на этом вопросе подробнее, потому что именно тонкостями сварочного процесса отличаются различные виды электросварки и, соответственно, виды сварочных аппаратов.
Основными участниками процесса являются:
- Сварочная ванна – участок расплавленного металла, при остывании которого образуется сварочный шов. При сваривании деталей необходимо, чтобы сварочная ванна находилась в непосредственном контакте с обеими деталями. Сварочную ванну необходимо обеспечить источником металла – как правило, металла свариваемых деталей для образования качественного шва недостаточно. Чаще всего источником металла служит плавящийся электрод, но в некоторых случаях используется дополнительный металл, например, обрезки проволоки, вносящиеся в область действия электрической дуги.
- Слой защитного газа. Расплавленный металл мгновенно вступает в реакцию с кислородом атмосферы, образуя пленку окислов. Наличие такой пленки многократно снижает качество шва, а то и вообще делает процесс сварки невозможным. Поэтому сварочную ванну необходимо защитить слоем инертного (не вступающего в реакцию с металлом) газа. Есть два метода формирования защитного слоя. В первом случае газ подается к точке сварки по шлангу из баллона, во втором случае – газ образуется при сгорании покрытия электрода.
- Электрическая дуга – участок ионизированного воздуха между катодом и анодом. Для образования качественного шва необходима стабильная дуга с определенной, соответствующей применяемому электроду, силой тока в ней. Если сила тока будет выше, металл электрода начнет гореть, если ниже – дуга погаснет.
- Катод и анод – положительный и отрицательный полюса, между которыми и возникает электрическая дуга. Чаще всего одним из полюсов является электрод сварочного аппарата, вторым – одна или обе свариваемые детали, ток на которые подается от сварочного аппарата с помощью зажима.
Все многообразие представленных на рынке сварочных аппаратов делится на несколько видов по способу сварки и по способу преобразования электроэнергии. По способу сварки разделяют MMA, MIG/MAG и TIG. По способу преобразования – сварочные трансформаторы, выпрямители и инверторы. Рассмотрим все эти виды подробнее.
Способ преобразования электроэнергии.
Сварочный трансформатор представляет собой простой силовой трансформатор, понижающий напряжение питающей сети с 220 (или с 380 – для трехфазного тока) до пригодных для сварки 50-90 вольт. Простота конструкции является залогом невысокой цены и надежности этого инструмента: он крайне неприхотлив, долговечен и надежен. Только сильная перегрузка (работа в режиме короткого замыкания) может вывести инструмент из строя. Но даже в этом случае (если в нем есть хотя бы минимальная защита от перегрева) его можно будет быстро отремонтировать своими силами.
Минусов у сварочного трансформатора тоже хватает: низкочастотный силовой трансформатор должен обладать солидным сердечником и иметь внушительное сечение проводов вторичной обмотки. И чем на больший ток рассчитан такой трансформатор, тем больше будут упомянутые величины, и, соответственно, вес трансформатора. Самые легкие модели будут весить от 20кг, при этом выдаваемый ими ток не позволит использовать электроды толщиной больше 4мм и сваривать крупные детали.
Регулировка выходного тока производится механически, перемещением по сердечнику вторичной обмотки (чем ближе вторичная обмотка к первичной, тем выше ток). Точность такой регулировки невысока, но большей для этого вида сварочных аппаратов и не требуется, поскольку на качество шва здесь точность установки тока влияет слабо. Главным минусом сварочных трансформаторов является переменный выходной ток: катод и анод меняются местами с частотой 50Гц, поэтому дуга «мерцает», скачет по свариваемому материалу и в целом нестабильна. Это сильно усложняет сварку, делает практически невозможным создание тонких аккуратных сварных швов и требует от сварщика большого опыта и хорошей реакции. Впрочем, в одном-единственном случае этот минус обращается в плюс: варить алюминиевые сплавы рекомендуется именно переменным током.
Кроме вышеперечисленного, трансформатор создает большую нагрузку на питающую сеть. Если вы подключаете трансформатор к промышленной трехфазной сети 380В, об этом можно не беспокоиться. А вот включить трансформатор в розетку в многоквартирном доме, возможно, просто не получится — выбьет вводной автомат, поскольку многие такие сети рассчитаны на единовременное подключение нагрузки не более 5кВА. Даже сеть на такие нагрузки и рассчитана – соседи будут смотреть на вас косо, поскольку с началом сварки во всем доме начнет выключаться бытовая техника, и «заморгают» лампочки. Владельцы дачных участков и хозяева частных домов наверняка тоже знакомы с этим явлением: замерцали лампочки и защелкали реле стабилизаторов – значит, сосед занялся сваркой.
Еще один минус: выходной ток и напряжение сварочного трансформатора сильно зависят от характеристик входного напряжения. Если оно ниже стандарта, ток на выходе также будет ниже ожидаемого. А если входное напряжение «скачет» (например, сосед как раз в это время тоже решил что-то приварить) – варить не получится вообще.
Сварочные выпрямители, фактически, являются теми же трансформаторами, но с дополнительным выпрямителем на силовых полупроводниковых элементах. В результате на выходе выпрямителя получается постоянный ток, обеспечивающий высокое качество шва и удобство сварки. На случай если вдруг потребуется варить переменным током, выпрямитель обычно имеет и такой выход. Сохранив надежность и неприхотливость сварочных трансформаторов, выпрямители обладают все теми же минусами: большой вес, большая нагрузка на сеть, зависимость от входного напряжения. Кроме того, выпрямители заметно дороже трансформаторов.
Сварочные инверторы. В этих аппаратах сначала производится частотное преобразование: частота входного напряжения повышается до десятков килогерц, затем, компактным высокочастотным трансформатором, производится снижение напряжения до 50-90 Вольт. Далее напряжение стабилизируется и выпрямляется. В результате на электроды поступает стабильный постоянный ток, напряжение и сила которого практически не зависят от характеристик входного напряжения (впрочем, до определенных пределов – при сильном падении входного напряжения электроника инвертора просто откажется работать). КПД инверторов очень высок и не зависит от используемой силы тока. Поэтому, если не применять толстые (5-6мм) электроды, можно спокойно, не опасаясь гнева соседей и выбивания автоматов, варить, запитав инвертор от любой розетки.
Инверторы компактны, вес их невелик и неудивительно, что в сравнении с ними выпрямители и, тем более, трансформаторы выглядят довольно непривлекательно.
Раньше основным недостатком инверторов была высокая цена, но большой спрос на этот вид сварочных аппаратов сделал свое дело и сегодня простой инвертор китайского производства стоит даже дешевле среднего трансформатора. Впрочем, в этом случае, гнаться за дешевизной не стоит: электронная начинка инверторов сложна, боится пыли и влаги, а при выходе из строя зачастую неремонтопригодна. Покупка дешевого инвертора от малоизвестного производителя связана с высоким риском скорого его выброса на свалку. Тем более что дорогие модели могут обладать некоторыми дополнительными – и совсем небесполезными – опциями. Поскольку весь процесс преобразования в инверторах управляется электроникой, возможности по контролю сварочных процессов в этих аппаратах значительно возрастают.
Способ сварки.
MMA. Ручная сварка плавящимся штучным электродом, покрытым обмазкой. Обмазка при сгорании образует шлако-газовую защиту шва, затрудняя доступ кислорода к сварочной ванне. Плюсами этого метода является его простота и возможность использования электродов любой толщины. Минус: шлак хрупок и подвержен окислению и после остывания сварочной ванны необходимо счистить. Если шов делается в несколько проходов, шлак необходимо счищать после каждого прохода, иначе прочность шва упадет в разы. Различают MMADC и MMAAC виды сварок – постоянным и переменным током соответственно. При выборе электродов на это следует обратить внимание: варить «неправильными» электродами может оказаться сложно или даже вообще невозможно. Также пристальное внимание на выбор электрода надо обратить при сварке металлов, отличных от железа – может потребоваться специальный электрод.
MIG/MAG. Сварка плавящимся электродом в среде инертного (MIG) или активного (MAG) защитного газа. Возможна сварка как черных, так и цветных металлов. Как правило, подача электрода (проволоки) осуществляется автоматически из мотка, находящегося в сварочном аппарате, поэтому варить такими аппаратами очень удобно. Минус: толщина электрода невысока и для сваривания толстостенных деталей такой способ неприменим. Зато для тонкостенных деталей этот метод не имеет равных по качеству шва. Для сварки же листов тоньше 1 мм это единственный применимый метод.
TIG. Сварка тугоплавким электродом в среде инертного газа. Применяется для сварки цветных металлов. Поскольку сам электрод не плавится, источником металла для шва обычно являются куски проволоки, вносимые в зону плавки. Плюс – возможность использования электродов разной толщины, что позволяет сваривать крупногабаритные детали.
Общие характеристики сварочных аппаратов.
Число фаз. Аппарат, рассчитанный на работу в промышленной трехфазной сети, будет невозможно использовать в домашних условиях. Исключение составляют некоторые модели сварочных трансформаторов, которые можно использовать в любой сети – просто нужно повернуть соответствующий переключатель.
Максимальный сварочный ток. Одна из важнейших характеристик аппарата – чем выше ток может дать аппарат, тем больший диаметр электрода можно в нем использовать и тем более толстый металл можно варить.
Ориентировочная таблица соответствий токов сварки.
Диаметр электрода | Толщина металла | Сварочный ток |
1,6 | 1-2 | 25-50 |
2 | 2-3 | 40-80 |
3 | 3-4 | 80-160 |
4 | 4-6 | 120-200 |
5 | 6-8 | 180-250 |
6 | 10-24 | 220-320 |
Продолжительность включения (продолжительность непрерывного включения, рабочий цикл). Начинка сварочных аппаратов подвержена перегреву, которым вентиляция аппарата зачастую не справляется. Поэтому зачастую непрерывная сварка невозможна. Обычно указывается в процентах от 10 минут для максимального рабочего тока. Так, ПВ 30% означает, что данный аппарат может работать на максимальном токе непрерывно 3 минуты, после чего ему требуется отдых в 7 минут. Впрочем, константой данный показатель не является – он может значительно меняться в зависимости от окружающей температуры.
Напряжение холостого хода – еще один немаловажная характеристика, показывающая, насколько легко будет этим аппаратом разжигать и поддерживать дугу. Для розжига дуги требуется повышенное (от 1,5 до 2раз) напряжение. Стандартами регламентировано максимальное напряжение сварки в 80В для переменного и 90В для постоянного тока, что в большинстве случаев является даже излишним. Но если у выбранной модели напряжение холостого хода ниже 40-50В, розжиг дуги может оказаться сопряжен с некоторыми трудностями.
Варианты выбора.
Если вам нужен неприхотливый аппарат, который можно долгое время использовать в любых климатических условиях, вы имеете возможность подключиться к мощной электросети и при этом вам неважна чистота шва или вы собираетесь варить только алюминиевые сплавы – выбирайте сварочный трансформатор. Он обойдется вам в 5000-17500 рублей.
Если, при сохранении требований к неприхотливости и надежности, вы желаете приобрести аппарат, которым без большого опыта и особых усилий можно делать чистые и ровные швы, обратите внимание на сварочные выпрямители. Такие представлены в ценовом диапазоне от 13000 до 19000 рублей.
Если вы желаете приобрести легкий и компактный сварочный аппарат, который можно использовать как в квартире, так и на даче, ваш выбор – инвертор. Следует только определиться с бюджетом: если вы планируете использовать аппарат «от случая к случаю» для разнообразных работ по дому – вам подойдет базовая модель с ценой в диапазоне от 5000 до 9000 рублей. Если же аппарат планируется использовать часто и подолгу, лучше обратить внимание на более «продвинутые» модели ценой от 9000 до 13000 рублей.
Если вы профессионально занимаетесь кузовными работами или изготовлением металлоконструкций из тонкого цветного металла, вам пригодится полуавтомат, работающий по типу MIG/MAG. Они стоят от 12000 до 33000 рублей.
И наконец, если вы свариваете массивные конструкции из цветного металла или вам нужен универсальный аппарат, который может как варить тонкий алюминий, так и толстую сталь, обратите внимание на аппараты с типом сварки TIG. Кстати, большинство из них может работать и в режиме простой ручной сварки MMA. Цены на такие аппараты начинаются от 5000 рублей.
Сварочные аппараты инверторного типа
Огромный интерес и возросший за последнее десятилетие пик популярности к новым конструкциям сварочных аппаратов, работающих по принципу инверторов, обусловлен следующими основными причинами:
повышенным качеством шва;
доступностью выполнения операций даже начинающими сварщиками благодаря включению комплекса функций горячего старта, антизалипания электрода и форсажа дуги;
минимизацией конструкции сварочного оборудования, обеспечивающей его мобильность;
значительной экономией электроэнергии по сравнению с трансформаторными аналогами.
Эти достоинства стали возможны благодаря изменению подхода к технологии создания сварочной дуги на электроде за счет внедрения последних достижений микропроцессорной техники.
Как устроены сварочные инверторы
Для их питания используется электроэнергия 220 V 50 Hz, которая поступает из обычной электрической розетки. (Аппараты, работающие от трехфазной сети, используют схожие алгоритмы.) Единственное ограничение, на которое необходимо обратить внимание — это потребляемая мощность аппарата. Она не должна превышать номинал защитных устройств сети и токопроводящие свойства электропроводки.
Последовательность пяти технологических циклов, используемых для создания сварочной дуги инвертором, показана на картинке.
В них входят процессы, выполняемые:
конденсаторным сетевым фильтром;
понижающим трансформатором напряжения высокой частоты;
Все эти устройства размещаются на плате внутри корпуса. При снятом кожухе они имеют примерно такой вид, который показан на картинке.
Блок выпрямления сетевого напряжения
На него через ручной выключатель, расположенный на корпусе, подается переменное напряжение стационарной электрической сети. Оно преобразуется диодным мостом в пульсирующую величину. Через полупроводниковые элементы этого блока проходит вся энергия сварочной дуги. Поэтому они подбираются с необходимым запасом по напряжению и току.
Для улучшения теплосъема диодная сборка, подвергаемая при работе серьезному нагреву, смонтирована на охлаждающих радиаторах, которые дополнительно обдуваются приточным воздухом от вентилятора.
Нагрев диодного моста контролируется датчиком температуры, настроенным в режим термопредохранителя. Он, как элемент защиты, при разогреве диодов до +90 о С, размыкает цепь питания.
Конденсаторный сетевой фильтр
Параллельно выходным контактом выпрямителя, создающего пульсирующее напряжение, подключаются два мощных электролитических конденсатора для совместной работы. Они сглаживают колебания пульсаций и выбираются всегда с запасом по напряжению. Ведь даже в обычном режиме на фильтре оно увеличено в 1,41 раза и достигает 220 х 1,41=310 вольт.
По этой причине конденсаторы подбираются по рабочему напряжению не менее 400 V. Их емкость рассчитывают для каждой конструкции по мощности максимального сварочного тока. Обычно она составляет от 470 микрофарад и более для одного конденсатора.
Работающий сварочный инвертор преобразовывает достаточно большую электрическую мощность, вызывая электромагнитные шумы. Этим он создает помехи остальному подключенному к сети электрооборудованию. Для их исключения на входе выпрямительного устройства устанавливают индуктивно-емкостной фильтр.
Его назначение заключается в сглаживании высокочастотных помех, поступающих из работающей схемы в сеть питания других электрических потребителей.
Преобразование постоянного напряжения в высокочастотное может выполняться по разным принципам.
В сварочных инверторах наиболее распространены две разновидности схемы, работающие по принципу «косого моста»:
двухтактный полумостовой импульсный преобразователь;
полный мостовой импульсный преобразователь.
Вариант исполнения первой схемы показан на картинке.
Здесь применены два мощных транзисторных ключа. Они могут быть собраны на полупроводниковых устройствах серий MOSFET либо IGBT.
Каскадированные полевые транзисторы MOSFET отлично работают в низковольтных инверторах, а также хорошо справляются с нагрузками сварочных устройств. Для ускоренной зарядки/разрядки большой емкости им нужен двухтактный драйвер с управлением противофазными сигналами для быстрого заряда конденсаторов одним транзистором и закорачивания затвора на массу для разряда — другим.
Все большую популярность в преобразователях для сварки завоевывают биполярные транзисторы IGBT. Они легко передают большие мощности высокого напряжения, но для управления требуют более сложные алгоритмы.
Схема двухтактного полумостового импульсного преобразователя встречается в конструкциях инверторов для сварки со средней ценовой категорией. Она обладает хорошим кпд, надежна, формирует трансформаторные импульсы прямоугольной формы с высокой частотой в несколько десятков кГц.
Схема полного мостового импульсного преобразователя более сложная, включает два дополнительных транзистора.
Она максимально использует все возможности высокочастотного трансформатора с транзисторными ключами, попарно работающими в режиме двух объединенных косых мостов.
Эта схема применяется в самых мощных и дорогих инверторах для сварки.
Все ключевые транзисторы устанавливают на мощные радиаторы для отвода тепла. Кроме того, их дополнительно защищают от возможных всплесков напряжения демпфирующими RC-фильтрами.
Это специальная трансформаторная конструкция, как правило, на ферритовом магнитопроводе, которая понижает с минимальными потерями напряжение высокой частоты после инвертора до значения устойчивого зажигания дуги порядка 60 — 70 вольт.
В его вторичной обмотке протекают большие сварочные токи до нескольких сотен ампер. Таким образом, при трансформации в/ч энергии с относительно небольшим значением тока и высоким напряжением во вторичной обмотке формируются токи для сварки с уже пониженным напряжением.
За счет использования высокой частоты и перехода на ферритовый магнитопровод значительно снижается вес и габариты самого трансформатора, уменьшаются потери мощности на перемагничивание железа, повышается кпд.
Например, сварочный трансформатор старой конструкции с железным магнитопроводом, обеспечивающий ток сварки 160 ампер, имеет вес около 18 кг, а высокочастотный (с такими же электрическими характеристиками) — чуть меньше 0,3 кг.
Преимущества в весе аппарата, а, следовательно, и условиях эксплуатации очевидны.
Силовой выходной выпрямитель
Его основу составляет мост, собранный из специальных мощных диодов с очень высоким быстродействием, способных реагировать на высокочастотный ток — открываться и закрываться со временем восстановления порядка 50 наносекунд.
Обычные диоды с такой задачей не справляются. Длительность их переходного процесса соответствует примерно половине периода синусоидальной гармоники тока или около 0,01 секунды. Поэтому они быстро нагреваются и перегорают.
Силовой диодный мост, как и транзисторы в/ч трансформатора, для отвода тепла размещается на радиаторах и снабжается защитой из демпфирующей RC -цепочки от бросков напряжения.
Выходные клеммы выпрямителя делают толстыми медными наконечниками для надежного подключения сварочных проводников к цепи электрода.
Особенности схемы управления
Все операции сварочного инвертора управляются процессором и контролируются им через обратные связи с помощью различных датчиков. Это обеспечивает практически идеальные параметры сварочного тока для соединения всевозможных металлов.
За счет точно дозированных нагрузок значительно сокращаются потери электроэнергии при сварке.
Для работы схемы управления подается постоянное стабилизированное напряжение от блока питания, который внутри схемно подключен к входным цепям 220 V. Это напряжение направляется на:
вентилятор охлаждения радиаторов и плат;
реле плавного запуска;
питание микропроцессора и операционного усилителя.
Функция реле плавного пуска инвертора понятна из названия. Оно работает по следующему принципу: в момент включения инвертора очень резко начинают заряжаться электролитические конденсаторы сетевого фильтра. Их ток заряда очень большой и он может повредить диоды выпрямителя.
Чтобы этого не произошло, заряд ограничивают мощным резистором, который своим активным сопротивлением снижает начальный бросок тока. Когда конденсаторы зарядятся, а инвертор начнет работать в расчетном режиме, реле плавного пуска срабатывает и своими нормально открытыми контактами шунтирует этот резистор, выводя его таким образом из цепей стабилизации.
Практически вся логика работы инвертора заключена внутри микропроцессорного контроллера. Он управляет работой мощных транзисторов преобразователя.
Защита силовых транзисторов от перенапряжений на затворе и эмиттере основана на применении стабилитронов.
В схему обмотки высокочастотного трансформатора подключен датчик — трансформатор тока, который своими вторичными цепями направляет пропорциональный по величине и углу сигнал для обработки логикой. Таким способом контролируется сила сварочных токов для осуществления влияния на них при запуске и работе инвертора.
Для контроля величины приходящего напряжения на входе сетевого выпрямителя аппарата подключается микросхема операционного усилителя. Она постоянно анализирует сигналы от защит по напряжению и току, определяя момент возникновения аварии, при которой необходимо заблокировать работающий генератор и отключить инвертор от сети питания.
Предельные отклонения напряжения питающей сети контролируются компаратором. Он срабатывает при достижении критических значений электроэнергии. Его сигнал последовательно обрабатывается логическими элементами для отключения генератора и самого инвертора.
Для выставления вручную силы тока сварочной дуги используется регулировочный потенциометр, ручка которого выведена на корпус прибора. Изменение его сопротивления позволяет использовать один из методов управления, влияя на:
амплитуду в/ч напряжения инвертора;
частоту высокочастотных импульсов;
Основные правила эксплуатации и причины поломок сварочных инверторов
Бережное отношение к сложной электронной технике всегда является залогом ее длительной и надежной эксплуатации. Но, к сожалению не все пользователи это положение применяют на практике.
Сварочные инверторы работают в производственных цехах, на стройках или используются домашними мастерами в личных гаражах либо на дачах.
В производственных условиях чаще всего инверторы страдают от пыли, которая собирается внутри корпуса. Ее источниками могут быть любые инструменты или станки обрабатывающие металлы, бетон, граниты, кирпич. Особенно часто это проявляется при работе «болгарками», штроборезами, перфораторами…
Следующей причиной поломки, происходящей при сварке, является создание неопытным сварщиком нерасчетных нагрузок на электронную схему. К примеру, если попытаться маломощным сварочным инвертором разрезать лобовую броню башни танка или железнодорожный рельс, то исход такой работы однозначно предсказуем: перегорание электронных компонентов IGBT или MOSFET.
Внутри схемы управления работает тепловое реле для защиты от постепенно возрастающих тепловых нагрузок, но оно не успеет среагировать на такие быстрые превышения сварочных токов.
Каждый сварочный инвертор характеризуется параметром «ПВ» — продолжительностью включения по отношению к длительности паузы остановки, который указывается в техническом паспорте. Пренебрежение этими рекомендациями завода приводит к неизбежным поломкам.
Неаккуратное отношение к аппарату может выразиться в его плохой транспортировке или перевозке, когда на корпус воздействуют посторонние механические удары или вибрации рамы движущегося автомобиля.
Среди наемных работников наблюдаются случаи эксплуатации инверторов при явных признаках неисправностей, требующих немедленного устранения, например, ослабление контактов, фиксирующих сварочные кабели в гнездах корпуса. Да и передача дорогостоящего оборудования неквалифицированному и плохо обученному персоналу тоже обычно приводит к поломкам.
В быту часто возникают снижения напряжения питающей сети, особенно в гаражных кооперативах, а сварщик не обращает на это внимания и старается быстрее сделать свою работу, «выжимая» из инвертора все, на что тот способен и неспособен…
Зимнее хранение дорогостоящего электронного оборудования в плохо отапливаемом гараже либо вообще в сарае приводит к осаждению конденсата из воздуха на платах, окислению контактов, повреждению дорожек и другим внутренним поломкам. Точно так же эти аппараты страдают от работы при низких температурах менее -15 градусов или атмосферных осадках.
Передача инвертора соседу для выполнения им сварочных работ не всегда оканчивается благоприятным исходом.
Однако, общая статистика ремонтных мастерских показывает, что у частных владельцев сварочное оборудование работает дольше и качественнее.
Сварочные инверторы старых выпусков уступают по надежности трансформаторам для сварки. А современные их разработки, особенно на IGBT-модулях, уже обладают сопоставимыми параметрами.
В процессе сварки внутри корпуса выделяется большое количество тепла. Используемая система для его отвода и охлаждения плат и электронных элементов у моделей даже среднего ценового диапазона не обладает высокой эффективностью. Поэтому при работе необходимо соблюдать перерывы для снижения температуры внутренних деталей и устройств.
Как и все электронные схемы, инверторные аппараты теряют работоспособность при повышенной влажности и появлении конденсата.
Несмотря на включение в конструкцию шумоподавляющих фильтров, в питающую электрическую схему проникают довольно значительные высокочастотные помехи. Технические решения, устраняющие такую проблему, значительно усложняют устройство, что ведет к резкому увеличению стоимости всего оборудования.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Всё разнообразие инверторных сварочных аппаратов
Без проведения сварочных работ сложно представить ремонт автомобиля, производственные, строительные работы, монтаж сантехники. Создать неразъёмное соединение, не используя инверторный аппарат, очень трудно. А выбрать достойный электроинструмент сложно из-за большого количества предложений на рынке.
Что это такое? Разновидности
Общий принцип работы всех сварочных аппаратов заключается в расплавлении электродом кромок соединяемых заготовок, в процессе образуется сварочная ванна. Если сварка ведётся покрытым электродом или омеднённой проволокой, то они же являются и присадкой. Если используется вольфрамовый стержень, то необходимо подавать присадку вручную. Тонкие листы можно соединять без присадочных материалов.
Простые сварочные аппараты состоят из силового трансформатора и регулятора силы тока, инверторные схемы подразумевают использование электроники.
Её назначение:
- Даёт возможность плавно регулировать сварочный ток.
- Изменять напряжение – в соответствии с другими характеристиками.
- Поддерживать стабильные параметры во время сварочных работ.
Современные аппараты чаще всего используют инверторную схему, причины этому:
- Уменьшенный размер оборудования – присутствие электроники позволяет отказаться от крупных трансформаторов.
- Стабильные характеристики сварочной дуги – схема корректирует параметры во время сварки.
- Чуть меньшие требования к качеству электросети – инверторная схема потребляет меньше энергии.
Второй минус — сложное устройство, которое не позволяет заниматься ремонтом оборудования без знания электрических схем.
Популярные модели умельцы всё-таки научились восстанавливать, но официально производители не публикуют принципиальные схемы своих сварочных аппаратов.
Для ручной дуговой сварки (РДС)
Предназначены для работы покрытыми электродами.
Их плюсы:
- Простота, минимальные размеры и вес.
- Аппараты, выдающие небольшой (до 190 А) сварочный ток, стоят недорого.
- Для сварки не требуются дополнительные материалы кроме электродов.
Аппараты для РДС – самые распространённые и универсальные. Для сварки понадобится приобрести покрытые обмазкой электроды, доступные диаметры: 2, 3, 4, 5 мм. Или импортные: 2,6 и 3,2 мм.
Для полуавтоматической сварки
Сварочные инверторы годятся для сварки с помощью проволоки в среде углекислого газа или смесей.
Преимущества такого оборудования:
- Большая скорость сварки.
- Легко научиться работать.
- Получаются аккуратные швы.
- Не требуется отбивать шлаковую корку (не образуется, если использовать непокрытую обычную проволоку).
Есть и недостатки: необходимо приобретать дополнительное оборудование. Это:
- Газовый редуктор.
- Шланг, способный выдержать давление 2-4 кг/см.
- Баллон: в продаже встречаются объёмы в 5, 10, 40 литров.
В связи с этим трудно заниматься сварочными работами при сильном ветре, углекислоту будет сдувать, в швах появятся поры ( и другие дефекты). Газ придётся время от времени заправлять, а для этого возить баллон на станцию. Расход зависит от объёма работ и выставленного на редукторе давления. Рекомендуется 1-1,5 кг/кв.см.
Есть возможность варить полуавтоматом и без газа, но для этого необходимо приобрести специальную порошковую проволоку. Продаются в небольших катушках примерно по 0,5-0,8 кг. Но её стоимость почти в 2,5 раза выше, чем цена на обычную вместе с газом.
Для аргонодуговой сварки (АДС)
Аппараты предназначены для соединения цветных сплавов: латуни, меди, бронзы, алюминия, а также любых других.
Главное отличие в том, что для работы потребуются дорогие материалы:
- Баллон с газом – аргоном (смесь Ar+CO2).
- Неплавящиеся вольфрамовые электроды.
- Шланг и газовый редуктор.
- Присадочный материал.
Поэтому аппарат стоит приобретать, если есть насущная необходимость в сварке разнообразных сплавов. Еще один неприятный момент: алюминий следует варить на переменном токе, а другие материалы – на постоянном. Поэтому придётся либо выбирать один из аппаратов, либо обзаводиться более дорогим – комбинированным.
Последний тип относится к профессиональному оборудованию, зато производители чаще всего допускают на таких аппаратах режим РДС. Это позволяет сэкономить при соединении стальных и чугунных заготовок.
Какой аппарат выбрать для дома и дачи
Первый этап при выборе аппарата – определение объёмов работ. Также требуется понять, какие металлы и сплавы нужно варить. Второй этап – определение типа питания. Если в загородном доме, мастерской или гараже доступно питание 380 В, то предпочтительнее купить именно такой, профессиональный аппарат. В таком случае инвертор будет работать намного стабильнее, чем от 220 В.
Для больших объёмов лучше приобретать полуавтомат, с его помощью процесс сборки и сварки металлоконструкций ускорится в 2-3 раза. Если же планируется использование аппарата для мелких работ, то достаточно обзавестись инвертором РДС 190-250 Ампер. Этого хватит и для сварки (швеллеров, уголков, арматуры), и для разрезания стали, если потребуется.
Аппараты для АДС с режимом ручной дуговой сварки – самый дорогой вариант, но для небольших мастерских – самый лучший. Позволит выполнять работы и для себя, и на заказ.
На что ещё обратить внимание:
- Индикация на панели – поможет начинающим сварщикам устанавливать требуемый сварочный ток.
- Количество настроек – позволит тонко отрегулировать параметры во время работы.
- Продолжительность нагрузки (ПН) – сколько времени (в процентах) будет работать инвертор в пределах цикла (5 минут). Этот параметр показывает на номинальный сварочный ток.
- Тип поджига вольфрамового электрода – контактный (прикосновением к детали) и бесконтактный (электрод лишь подносится к поверхности на расстояние). Второй тип лучше – вольфрам дольше сохранится, не будет залипать.
- Стабилизация сварочной дуги – помогает при «скачках» напряжения удержать силу тока на нужном уровне и не дать электроду «залипнуть».
Популярные модели. Отзывы
Нужно рассмотреть несколько распространённых и проверенных аппаратов всех трёх типов. Изучать сегмент дешёвых сварочников бессмысленно, поскольку покупка таких инверторов – лотерея. Они могут проработать всего неделю, а иногда – несколько лет и без каких-либо проблем.
Если говорить о странах-производителях, то бояться надписей «Made in China» не следует. Подавляющее большинство сварочного оборудования производится в КНР. Аппараты европейской сборки в Россию почти не поставляются, так как из-за чрезмерно высокой стоимости на них нет спроса.
Для РДС
Три лучших аппарата по рейтингам различных покупателей и продавцов.
РЕСАНТА САИ-190
- Максимальный сварочный ток – 190 А
- Диаметр электродов – до 5 мм
- Масса – 4,7 кг
- Гарантийный срок – 2 года
Даже при нестабильном напряжении в сети варит хорошо. Лучше использовать электроды МР-3С 3 мм. Защита от перегрева.
Минусы: короткие кабели.
Wester MINI 220T
- Максимальный сварочный ток – 220 А
- Диаметр электродов – до 5 мм
- Масса – 3 кг
- Гарантийный срок – 60 месяцев
Лёгкий и мощный аппарат. Цифровая индикация на передней панели.
Минусы: нет ручки для транспортировки.
Fubag IR 180
- Максимальный сварочный ток – 180 А
- Диаметр электродов – до 4 мм
- Масса – 4,6 кг
- Гарантийный срок – 2 года
Удобная рукоять для переноски (есть ремень), надёжный корпус, достаточная мощность для дома и дачи.
Полуавтоматы
Рассмотрены аппараты из топ-3 по отзывам покупателей.
Quattro Elementi MultiPro 2100
- Максимальный сварочный ток – 190 А
- Толщина проволоки – 0,8 и 1 мм
- Масса – 16 кг
- Гарантийный срок – 1 год
Три вида сварки в одном аппарате. В комплекте: горелка для полуавтомата, кабель для РДС.
Минусы: Нет горелки для АДС.
Wester MIG 140i
- Максимальный сварочный ток – 140 А
- Толщина проволоки – 0,8 мм
- Масса – 9 кг
- Гарантийный срок – 60 месяцев
Хорошая комплектация. Удобная рукоять для переноски.
Минусы: мощности не всегда хватает. Аппарат хорош для кузовных работ.
Сварог REAL MIG 200 (N24002N)
- Максимальный сварочный ток – 200 А
- Толщина проволоки – 0,6-1 мм
- Масса – 13 кг
- Гарантийный срок – 5 лет
Хорошо варит при колебаниях в сети. Качественная сборка, надёжный корпус.
Минусы: короткие провода, высокая цена.
Для АДС
Сварог REAL TIG 200 P AC/DC (E20101)
- Максимальный сварочный ток АДС – 200 А
- Ток в режиме РДС – 160 А
- Тип поджига дуги вольфрамовым электродом – бесконтактный
- Масса – 9 кг
- Гарантия – 5 лет.
- Есть режим РДС, хороший запас мощности. Лёгкий и компактный аппарат.
Минусы: цена.
Aurora INTER TIG 200 AC/DC Pulse
- Максимальный сварочный ток АДС – до 200 А
- Ток в режиме РДС – до 200 А
- Тип поджига дуги вольфрамовым электродом – бесконтактный
- Масса – 20 кг
- Гарантия – 2 года
- Много настроек, мощная вентиляция корпуса. Величины тока хватает на сварку алюминия средней толщины – до 5-6 мм.
Минусы: громоздкий, большой вес.
TRITON ALUTIG 250P AC/DC
- Максимальный сварочный ток АДС – до 250 А
- Ток в режиме РДС – до 200 А
- Тип поджига дуги вольфрамовым электродом – бесконтактный
- Масса – 23 кг
- Гарантия – 1 год
- Много настроек, есть память для сохранения 10 режимов.
Минусы: высокая цена, большой вес.
Как правильно использовать и обслуживать
Чтобы оборудование прослужило дольше, требуется своевременно удалять частицы, которые скапливаются внутри. Для удаления нужно либо часто пользоваться мощным пылесосом, выдувая пыль из вентиляционных щелей, либо периодически снимать кожух и очищать внутренности вручную – кисточкой, сжатым воздухом.
Горелку полуавтомата требуется очищать от брызг во время работы. Сопло рекомендуется обрабатывать антипригарными составами: спреями или пастой.
Не следует варить на максимальном токе длительное время, это приведёт к уменьшению срока эксплуатации аппарата.
Обязательно соблюдать технику безопасности: использовать защитную маску, рукавицы или краги. Нельзя варить рядом с огнеопасными предметами. Необходимо всегда иметь под рукой противопожарные средства.
Возможные проблемы
Часто возникающие проблемы:
- Аппарат выключился во время сварки – на современных платах стоят температурные датчики, которые отключают питание. Часто на панели загорается индикатор с графическим символом «Термометр». В таких случаях не нужно отключать аппарат. Вентилятор поможет быстрее охладить внутреннюю часть.
- Во время сварки РДС электрод всё время прилипает – в сети низкое напряжение, его не хватает для работы. Нужно отключить все лишние электроприборы, уменьшить силу тока на инверторе, взять электроды меньшего диаметра.
- При сварке инвертором-полуавтоматом или АДС появляются поры. Или вольфрам не возбуждает дугу – малое давление газа. Нужно чтобы поток углекислоты или аргона обдувал зону сварки. Оптимальное давление – 1-1,5 кг/кв. см. Для сварки алюминия иногда требуется чуть больше.
- От корпуса аппарата бьёт током – такое часто случается на улице при большой влажности. Нужно заземлить аппарат или работать на резиновом коврике.
Выбор сварочного инвертора зависит от того, какие работы придётся выполнять в будущем.