Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Наибольшая диагональ правильного шестиугольника равна 10 см. Чему равен радиус: 1) описанной около него окружности; 2) вписанной в него окруж

Наибольшая диагональ правильного шестиугольника равна 10 см. Чему равен радиус: 1) описанной около него окружности; 2) вписанной в него окруж.

В 20:59 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: Наибольшая диагональ правильного шестиугольника равна 10 см. Чему равен радиус: 1) описанной около него окружности; 2) вписанной в него окружности?

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

решение задания по геометрии

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Журавлёва Номи Ростиславовна — автор студенческих работ, заработанная сумма за прошлый месяц 64 600 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания — цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.

Правильная шестиугольная призма — свойства, признаки и формулы

Одним из фундаментальных объектов в геометрии является многоугольник. Если рассматривать фигуру в трёхмерном пространстве, то с помощью двух таких геометрических тел с шестью углами можно построит правильную шестиугольную призму. При этом боковые грани обязательно будут прямоугольниками. По своему виду такая фигура напоминает пчелиные соты, поэтому она и интересна для изучения архитекторам и математикам.

Правильная шестиугольная призма - свойства, признаки и формулы

Общие сведения

Призма представляет собой многогранную объёмную фигуру. Две стороны её всегда конгруэнтные (равные) и расположены относительно друг друга в параллельных плоскостях. Остальные же грани являются параллелограммами и формируют общие боковые основания с параллельными поверхностями. Четырёхугольники состоят из попарно равноудалённых прямых. Называют их боковыми гранями призмы. Оставшиеся же 2 многоугольника — основанием. По сути, фигура — это частный случай некругового цилиндра.

Кроме основания и граней, в состав стереофигуры входит:

Правильная шестиугольная призма - свойства, признаки и формулы

  • высота — прямая, перпендикулярная плоскостям, лежащим у основания многогранника;
  • боковые рёбра — стороны, являющиеся общими для боковых граней;
  • вершины — точки, принадлежащие сразу двум отрезкам и формирующим периметр геометрического тела;
  • диагонали — отрезки, проходящие через 2 вершины, но при этом несвойственные одной грани;
  • диагональные плоскости — пересекающие боковые рёбра и диагональ у основания.

Кроме этого, используются такие понятия, как диагональное и ортогональное сечение. Первое представляет собой параллелограмм, полученный при пересечении призмы и диагональной плоскости. Второе же — пересечение многогранника с плоскостью, перпендикулярной боковому ребру.

Правильная шестиугольная призма - свойства, признаки и формулы

В зависимости от расположения стенок и вида основания, призмы разделяют на 3 типа. Прямой называют ту, где все грани — прямоугольники. Если у фигуры в основании находится правильный многоугольник, стереофигура считается правильной. Частным случаем её является полуправильная призма. В ней боковые грани образуют квадраты. Когда же у многогранника основания непараллельные, призму называют усечённой.

Читайте так же:
Классификация дефектов сварных швов

Полуправильный многогранник, имеющий 2 параллельных основания в виде правильных n-угольников, равных между собой, чьи грани представляют собой ломаную линию, называют антипризмой. В качестве примера такой фигуры можно привести октаэдр, икосаэдр и восьмиугольный октагон.

Свойства шестигранника

Правильную шестиугольную призму принято обозначать большими латинскими буквами: ABCDEFA1B1C1D1E1F1. Длину основания подписывают маленьким символом a, а длину боковой стороны h. К характеристикам фигуры относят площади основания, боковые грани, полную поверхность, объём многогранника. Всего у геометрического тела 8 граней, 18 рёбер и 12 вершин.

Для успешного вычисления различных параметров фигуры понадобится знать следующие формулы:

Правильная шестиугольная призма - свойства, признаки и формулы

Если рассмотреть правильный шестиугольник, лежащий в основе призмы ABCDEF, и провести отрезки AB, CD, EF, у них будет общая точка пересечения. Для удобства обозначить её можно буквой O. Так как, в соответствии со свойствами, треугольники AOB, BOC, COD, DOE, EOF, FOA будут правильными, можно составить равенство: AO = OD = EO = OB = CO = OF = a .

Правильная шестиугольная призма - свойства, признаки и формулы

Через точку М можно провести прямую AC и CF. Образованный ранее треугольник AEO будет равнобедренным. В нём отрезок AO равняется по величине OE. Значит, угол EOA будет развёрнутым и равняться 120 градусам. Используя свойства равнобедренного треугольника, можно записать: AE = a * √2 * (1 — cos EOA). То есть: AE = AC = √3 * a.

По аналогии можно найти и стороны: EA1, FB1, AC1, BD1, CE1, DF1. Так как AA1 = h, а из свойств правильной призмы следует, что угол EAA1 — прямой, длины сторон будут равны между собой, и их можно найти, используя формулу: √(AA1 2 + AE 2 )= √(h 2 + 3 * a) = 2 * a. Грань EB1 = FC1 = AD1 = BE1 = CF1 = DA1 = √(BB1 2 + BE 2 ) = √(h 2 + 4 *a) = √5 *a. Сторона FE1 = √(FE 2 + EE 2 ) = √(h 2 + a 2 ) = √2 *a.

Длины диагоналей призмы равняются сумме квадратов высоты и длины основания под корнем. Это легко доказать, если принять, что ЕЕ1 = h, а FE = a. Треугольник FEE1 прямоугольный, значит, FE = √(h 2 + a 2 ), что и следовало доказать.

Решение простого примера

Такого вида задачи обычно даются в учебниках по геометрии для выпускных классов средней школы. Решить их самостоятельно несложно, нужно только знать формулы и представлять, как выглядит та или иная фигура. При этом часто приходится использовать дополнительные построения. Вот один из таких типовых примеров.

Правильная шестиугольная призма - свойства, признаки и формулы

Пусть имеется девятиугольная фигура, в которую вписана правильная шестиугольная призма со стандартным обозначением вершин. Сторона основания в ней составляет 4 см, а длина бокового ребра меньше её в 2 раза, то есть равняется 2. Необходимо вычислить расстояние от точки C1 до прямой, соединяющей вершины EF. По условию задачи в основании лежит геометрическое тело, у которого все стороны и углы равны, то есть фигура правильная.

Чтобы понять, что будет представлять искомая прямая, нужно изобразить призму на рисунке и на нём же начертить отрезок. Фактически это будет перпендикуляр, который и является вычисляемым расстоянием. Проекцией точки С1 будет вершина С. Из неё можно построить перпендикуляр, который ограничится точкой E. Таким образом, поставленная задача сводится к поиску длины отрезка C1E.

Найти длину прямой можно как гипотенузу прямоугольного треугольника С1СE. Треугольная фигура будет с прямым углом C. Из условия задачи отрезок С1С в два раза меньше ребра основания, а значит равен 2. Теперь осталось найти, чему равняется длина CE. Геометрическое тело CDE является равнобедренным. По условию CD = ED. Сумму углов шестиугольника можно найти по формуле е = 180 * (n — 2) = 180 * 4 = 720. Получается, что на каждый угол приходится по 120 градусов.

Правильная шестиугольная призма - свойства, признаки и формулы

С вершины D можно опустить перпендикуляр DN на CE. Принимая во внимание свойства равнобедренного треугольника, высота DN будет медианной и биссектрисой. Следовательно, угол C равняется 30 градусов, так как CDH — прямоугольный.

Теперь можно найти СH. Сделать это возможно через косинус угла C: cos 30 = CH / CD. Отсюда: CH = 4 * p/2 = 2 √ 3. Так как CH = HE, сторона CE = 2 * 2 √3. К треугольнику CC1E можно применить теорему Пифагора: C1E 2 = C1C 2 + CE = 2 2 + (4 c3) 2 . C1E 2 = √ 52. Таким образом, искомый ответ можно записать так: C1E = 2√13.

Задача высокого уровня

Решение примеров повышенного уровня сложности предполагает не только хорошее понимание изучаемого материала, но и знание предыдущих тем. Понадобится вспомнить формулы для нахождения площадей и объёмов плоских фигур и их свойства. Вот пример одной из таких задач.

Пусть имеется шестиугольная объёмная фигура, у которой баковая грань равняется 6, а площадь основания 12. Нужно найти объём геометрического тела с вершинами в точках A, B1, C1, D1, E1, F1.

Правильная шестиугольная призма - свойства, признаки и формулы

В таких задачах перед тем как непосредственно приступить к вычислениям, желательно использовать вспомогательный рисунок. На нём нужно изобразить фигуру в трёхмерной системе координат и подписать все её вершины.

Согласно условию, площадь основания Sabcde1f1 = 12, отрезок AA1 = 6. Так как фигура правильная, то все ребра у призмы буду равны. Чтобы найти, сколько будет составлять объём, понадобится обозначить многогранник. Для этого следует построить отрезки F1B, F1A, B1, E1A, D1A, C1A. Получившаяся фигура представляет собой пирамиду.

Формула для нахождения объёма пирамиды записывается так: V = h * S / 3. Её можно привести к виду: V = (AA1 * Sb1c1d1e1f1) / 3. Теперь нужно определить, чему же будет равняться площадь шестиугольника. Так как в основании призмы лежит правильная фигура с шестью углами, радиус описанной окружности будет совпадать с боковой стороной.

Таким образом, искомая площадь будет равняться шести поверхностям правильного треугольника. В свою очередь, его занимаемый размер можно определить как Sтр = (a * b) * sin / 2. Значит, площадь основания призмы равна: S = (6 * R * R * sin 60) / 2. Подставив заданное условием значение из формулы, можно выразить радиус: R 2 = (12 * 2) / 3 √ 3 = 8 /√3.

Читайте так же:
Как выбрать недорогой хороший шуруповерт

Площадь треугольника A1B1F1 находится как произведение сторон, умноженное на синус угла и разделённое на 2: S = (a * a * sin120) / 2 = a 2 * sin60 / 2 = (R 2 * √ 3/3) / 2. Подставив значение R, можно получить: S = (½) * (8 / √ 3) * (√3 / 2) = 2. Тогда площадь пятиугольника будет равняться разнице поверхностей шестиугольника и треугольника A1B1F1, то есть S = 12 — 2 = 10. Теперь можно будет подсчитать и объём пирамиды: Vab1c1d1e1f1 = (1 / 3) * 6 * 10 = 20. Задача решена.

Площадь правильного шестиугольника – формула и расчет онлайн

В публикации представлены онлайн-калькуляторы и формулы, позволяющие вычислить площадь правильного шестиугольника через длину его стороны или радиус описанной окружности.

Через сторону

Площадь правильного шестиугольника через сторону

Формула для нахождения площади правильного шестиугольника через сторону:

cdot a^2><2>> , где a — сторона шестиугольника.

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

Через сторону

Формула расчета

Формула расчета площади правильного шестиугольника через длину стороны

Через радиус описанной окружности

Формула расчета

Формула расчета площади правильного шестиугольника через радиус описанной окружности

Немного фактов из истории

Геометрия использовалась еще в древнем Вавилоне и прочих государствах, существовавших в одно время с ним. Вычисления помогали при возведении значительных сооружений, так как благодаря ей зодчие знали как выдержать вертикаль, правильно составить план, определить высоту.

Эстетика тоже имела большое значение, и здесь снова шла в ход геометрия. Сегодня этой науки нужны строителю, закройщику, архитектору, да и не специалисту тоже.

Поэтому лучше уметь рассчитывать S фигур, понимать, что формулы могут пригодиться на практике.

Геометрия в древнем Вавилоне

Формулы:

d = 2 * a
d2 = √3 * a
p = 6 * a
S = 3/2 * √3 * a2
r = √3 / 2 * a
Высота = d2 = 2 * r
Радиус окружности = a
Внутренние углы: 120°, 9 диагоналей

S- площадь, p – периметр
Стороны и углы равны между собой
Короткие диагонали образуют гексограмму
Длинные диагонали образуют шесть равносторонних треугольников, с длинной ребра а
Вписанная и описанная окружность

Площадь правильного 6-угольника

Итак, у нас шестиугольная фигура с равными сторонами и углами. В повседневности мы часто имеем возможность встретить предметы правильной шестиугольной формы.

  • гайка;
  • пчелиные соты;
  • снежинка.

Шестиугольная фигура наиболее экономично заполняет пространство на плоскости. Взгляните на тротуарную плитку, одна подогнана к другой так, что зазоров не остается.

Каждый угол равен 120˚. Сторона фигуры равна радиусу описанной окружности.

Построение правильного шестиугольника

Шестиугольные числа

В теории чисел существуют фигурные числа, связанные с определенными геометрическими фигурами. Наибольшее применение находят треугольные и квадратные, а также тетраэдрические и пирамидальные числа, используя которые легко выкладывать геометрические фигуры при помощи реальных предметов. Например, пирамидальные числа подскажут вам, как сложить пушечные ядра в устойчивую пирамиду. Существуют также и шестиугольные числа, которые определяют число точек, необходимое для построения гексагона.

Расчет

Требуемое значение можно вычислить, разбив фигуру на шесть треугольников с равными сторонами.

Чтоб рассчитать S , пользуются следующей формулой:

Формула расчета 1

Вычислив S одного из треугольников, нетрудно определить и общую. Простая формула, так как правильный шестиугольник, по сути, является шестью равными треугольниками. Таким образом, для ее расчета найденную площадь одного треугольника умножают на 6.

Если от центра шестиугольника к любой его стороне провести перпендикуляр, получается отрезок – апофема.

Посмотрим, как находить S шестиугольника, если апофема известна:

  1. S =1/2×периметр×апофема.
  2. Возьмем апофему равную 5√3 см.
  1. Находим периметр, используя апофему: так как апофема перпендикулярно к стороне 6-угольника, углы треугольника, образованного с помощью апофемы, равняются 30˚-60˚-90˚. Каждая сторона треугольника соответствует: x-x√3-2x, где короткая, против угла 30˚,- это x; длинная сторона против угла 60˚- x√3, а гипотенуза – 2x.
  2. Апофему x√3 можно подставить в формулу a=x√3. Если апофема равна 5√3, подставив данную величину, получим: 5√3см=x√3, или x=5см.
  3. Короткая сторона треугольника составляет 5см, так как эта величина – половина длины стороны 6-угольника. Умножив 5 на 2, получим 10см, что есть значение длиной стороны.
  4. Полученную величину умножим на 6 и получим значение периметра – 60см.

Подставляем полученные результаты в формулу: S=1/2×периметр×апофема

Считаем:

Упрощаем полученный ответ, чтоб избавиться от корней. Результат будет выражен в квадратных сантиметрах: ½×60см×5√3см=30×5√3см=150 √3см=259,8с м².

Интересные факты

Форму правильного шестиугольника имеют пчелиные соты, сечение гаек и карандашей, кристаллическая решетка графита.

Читайте так же:
Что такое гальваника в ювелирном деле

Правильная шестиугольная призма — свойства, признаки и формулы

6 угольная призма

Призма представляет собой многогранную объёмную фигуру. Две стороны её всегда конгруэнтные (равные) и расположены относительно друг друга в параллельных плоскостях. Остальные же грани являются параллелограммами и формируют общие боковые основания с параллельными поверхностями. Четырёхугольники состоят из попарно равноудалённых прямых. Называют их боковыми гранями призмы. Оставшиеся же 2 многоугольника — основанием. По сути, фигура — это частный случай некругового цилиндра.

Кроме основания и граней, в состав стереофигуры входит:

Правильная шестиугольная призма

  • высота — прямая, перпендикулярная плоскостям, лежащим у основания многогранника;
  • боковые рёбра — стороны, являющиеся общими для боковых граней;
  • вершины — точки, принадлежащие сразу двум отрезкам и формирующим периметр геометрического тела;
  • диагонали — отрезки, проходящие через 2 вершины, но при этом несвойственные одной грани;
  • диагональные плоскости — пересекающие боковые рёбра и диагональ у основания.

Кроме этого, используются такие понятия, как диагональное и ортогональное сечение. Первое представляет собой параллелограмм, полученный при пересечении призмы и диагональной плоскости. Второе же — пересечение многогранника с плоскостью, перпендикулярной боковому ребру.

Шестиугольная призма

В зависимости от расположения стенок и вида основания, призмы разделяют на 3 типа. Прямой называют ту, где все грани — прямоугольники. Если у фигуры в основании находится правильный многоугольник, стереофигура считается правильной. Частным случаем её является полуправильная призма. В ней боковые грани образуют квадраты. Когда же у многогранника основания непараллельные, призму называют усечённой.

Полуправильный многогранник, имеющий 2 параллельных основания в виде правильных n-угольников, равных между собой, чьи грани представляют собой ломаную линию, называют антипризмой. В качестве примера такой фигуры можно привести октаэдр, икосаэдр и восьмиугольный октагон.

Свойства шестигранника

Правильную шестиугольную призму принято обозначать большими латинскими буквами: ABCDEFA1B1C1D1E1F1. Длину основания подписывают маленьким символом a, а длину боковой стороны h. К характеристикам фигуры относят площади основания, боковые грани, полную поверхность, объём многогранника. Всего у геометрического тела 8 граней, 18 рёбер и 12 вершин.

Для успешного вычисления различных параметров фигуры понадобится знать следующие формулы:

Шестиугольная призма

  1. Площадь основания. Так как в основе тела лежат правильные шестиугольники, то, используя их свойства, можно получить формулу: S = (3 * a 2 * √ 3) / 2, где: а — сторона многоугольника.
  2. Площадь полной поверхности. Определяется она из равенства: Sb = 6 * a * h + 2 * (3 * a 2 * √ 3) / 2. Из-за того, что площадь плоскости можно получить путём сложения сторон призмы и двух поверхностей её основания, а грань — прямоугольник (S прямоугольника = a * h), то указанная формула будет верной.
  3. Объём. Он равняется произведению площади основания на высоту. Роль последней может играть ребро любой стороны, например, BB1. Учитывая сказанное, формулу можно записать так: V = S * BB 1 = ((3 √ 3) / 2) * (a 2 * h).

Если рассмотреть правильный шестиугольник, лежащий в основе призмы ABCDEF, и провести отрезки AB, CD, EF, у них будет общая точка пересечения. Для удобства обозначить её можно буквой O. Так как, в соответствии со свойствами, треугольники AOB, BOC, COD, DOE, EOF, FOA будут правильными, можно составить равенство: AO = OD = EO = OB = CO = OF = a .

Шестигранная призма

Через точку М можно провести прямую AC и CF. Образованный ранее треугольник AEO будет равнобедренным. В нём отрезок AO равняется по величине OE. Значит, угол EOA будет развёрнутым и равняться 120 градусам. Используя свойства равнобедренного треугольника, можно записать: AE = a * √2 * (1 — cos EOA). То есть: AE = AC = √3 * a.

По аналогии можно найти и стороны: EA1, FB1, AC1, BD1, CE1, DF1. Так как AA1 = h, а из свойств правильной призмы следует, что угол EAA1 — прямой, длины сторон будут равны между собой, и их можно найти, используя формулу: √(AA1 2 + AE 2 )= √(h 2 + 3 * a) = 2 * a. Грань EB1 = FC1 = AD1 = BE1 = CF1 = DA1 = √(BB1 2 + BE 2 ) = √(h 2 + 4 *a) = √5 *a. Сторона FE1 = √(FE 2 + EE 2 ) = √(h 2 + a 2 ) = √2 *a.

Длины диагоналей призмы равняются сумме квадратов высоты и длины основания под корнем. Это легко доказать, если принять, что ЕЕ1 = h, а FE = a. Треугольник FEE1 прямоугольный, значит, FE = √(h 2 + a 2 ), что и следовало доказать.

Решение простого примера

Такого вида задачи обычно даются в учебниках по геометрии для выпускных классов средней школы. Решить их самостоятельно несложно, нужно только знать формулы и представлять, как выглядит та или иная фигура. При этом часто приходится использовать дополнительные построения. Вот один из таких типовых примеров.

Шестигранная призма

Пусть имеется девятиугольная фигура, в которую вписана правильная шестиугольная призма со стандартным обозначением вершин. Сторона основания в ней составляет 4 см, а длина бокового ребра меньше её в 2 раза, то есть равняется 2. Необходимо вычислить расстояние от точки C1 до прямой, соединяющей вершины EF. По условию задачи в основании лежит геометрическое тело, у которого все стороны и углы равны, то есть фигура правильная.

Читайте так же:
Что такое кобальтовое сверло по металлу

Чтобы понять, что будет представлять искомая прямая, нужно изобразить призму на рисунке и на нём же начертить отрезок. Фактически это будет перпендикуляр, который и является вычисляемым расстоянием. Проекцией точки С1 будет вершина С. Из неё можно построить перпендикуляр, который ограничится точкой E. Таким образом, поставленная задача сводится к поиску длины отрезка C1E.

Найти длину прямой можно как гипотенузу прямоугольного треугольника С1СE. Треугольная фигура будет с прямым углом C. Из условия задачи отрезок С1С в два раза меньше ребра основания, а значит равен 2. Теперь осталось найти, чему равняется длина CE. Геометрическое тело CDE является равнобедренным. По условию CD = ED. Сумму углов шестиугольника можно найти по формуле е = 180 * (n — 2) = 180 * 4 = 720. Получается, что на каждый угол приходится по 120 градусов.

Правильная шестиугольная призма

С вершины D можно опустить перпендикуляр DN на CE. Принимая во внимание свойства равнобедренного треугольника, высота DN будет медианной и биссектрисой. Следовательно, угол C равняется 30 градусов, так как CDH — прямоугольный.

Теперь можно найти СH. Сделать это возможно через косинус угла C: cos 30 = CH / CD. Отсюда: CH = 4 * p/2 = 2 √ 3. Так как CH = HE, сторона CE = 2 * 2 √3. К треугольнику CC1E можно применить теорему Пифагора: C1E 2 = C1C 2 + CE = 2 2 + (4 c3) 2 . C1E 2 = √ 52. Таким образом, искомый ответ можно записать так: C1E = 2√13.

Задача высокого уровня

Решение примеров повышенного уровня сложности предполагает не только хорошее понимание изучаемого материала, но и знание предыдущих тем. Понадобится вспомнить формулы для нахождения площадей и объёмов плоских фигур и их свойства. Вот пример одной из таких задач.

Пусть имеется шестиугольная объёмная фигура, у которой баковая грань равняется 6, а площадь основания 12. Нужно найти объём геометрического тела с вершинами в точках A, B1, C1, D1, E1, F1.

Свойства в правильной шестиугольной призме

В таких задачах перед тем как непосредственно приступить к вычислениям, желательно использовать вспомогательный рисунок. На нём нужно изобразить фигуру в трёхмерной системе координат и подписать все её вершины.

Согласно условию, площадь основания Sabcde1f1 = 12, отрезок AA1 = 6. Так как фигура правильная, то все ребра у призмы буду равны. Чтобы найти, сколько будет составлять объём, понадобится обозначить многогранник. Для этого следует построить отрезки F1B, F1A, B1, E1A, D1A, C1A. Получившаяся фигура представляет собой пирамиду.

Формула для нахождения объёма пирамиды записывается так: V = h * S / 3. Её можно привести к виду: V = (AA1 * Sb1c1d1e1f1) / 3. Теперь нужно определить, чему же будет равняться площадь шестиугольника. Так как в основании призмы лежит правильная фигура с шестью углами, радиус описанной окружности будет совпадать с боковой стороной.

Таким образом, искомая площадь будет равняться шести поверхностям правильного треугольника. В свою очередь, его занимаемый размер можно определить как Sтр = (a * b) * sin / 2. Значит, площадь основания призмы равна: S = (6 * R * R * sin 60) / 2. Подставив заданное условием значение из формулы, можно выразить радиус: R 2 = (12 * 2) / 3 √ 3 = 8 /√3.

Площадь треугольника A1B1F1 находится как произведение сторон, умноженное на синус угла и разделённое на 2: S = (a * a * sin120) / 2 = a 2 * sin60 / 2 = (R 2 * √ 3/3) / 2. Подставив значение R, можно получить: S = (½) * (8 / √ 3) * (√3 / 2) = 2. Тогда площадь пятиугольника будет равняться разнице поверхностей шестиугольника и треугольника A1B1F1, то есть S = 12 — 2 = 10. Теперь можно будет подсчитать и объём пирамиды: Vab1c1d1e1f1 = (1 / 3) * 6 * 10 = 20. Задача решена.

Исследование свойств равносторонних, равноугольных, полуправильных шестиугольников.

Габдуллина Лилия Талгатовна

Выведены следующие важные свойства равноугольных шестиугольников:

1) Противоположные стороны параллельны.

2) Биссектрисы углов параллельны сторонам.

3) Сумма двух смежных сторон равна сумме двух противоположных смежных сторон.

4) Три средние линии пересекаются в одной точке.

5) Середины больших диагоналей являются вершинами равностороннего треугольника, а его стороны параллельны сторонам шестиугольника.

Если в шестиугольнике присутствует равноугольность и равносторонность в каких-то комбинациях, то это становится основанием для новых свойств.

Выведены следующие важные свойства полуправильных шестиугольников:

1)Продолжения сторон полуправильного шестиугольника пересекаются под углом 60°.

2)Диагонали полуправильного шестиугольника равны.

3) Если около полуправильного шестиугольника можно описать окружность, то его углы равны между собой.

4) Если около полуправильного шестиугольника можно описать окружность, то его стороны равны между собой.

Скачать:

ВложениеРазмер
Проектная работа по теме Исследование свойств равносторонних, равноугольных, полуправильных шестиугольников.689 КБ

Предварительный просмотр:

ГБОУ БАШКИРСКАЯ РЕСПУБЛИКАНСКАЯ

ГИМНАЗИЯ-ИНТЕРНАТ №1 ИМЕНИ РАМИ ГАРИПОВА

«Исследование свойств равносторонних, равноугольных, полуправильных шестиугольников»

обучающаяся 11 класса

имени Рами Гарипова

Руководитель: Габдуллина Л.Т.

1.Муниципальное образование: Республиканское ОУ

2.Фамилия, имя, отчество участника: Хабилова Алия Ильдаровна,

3.Общеобразовательное учреждение (по Уставу): Государственное бюджетное общеобразовательное учреждение Башкирская республиканская гимназия-интернат №1 имени Рами Гарипова

5.Домашний адрес: Республика Башкортостан, г. Уфа, ул. Российская, 88

7.Название работы: Равносторонние и равноугольные шестиугольники

8.Фамилия, имя, отчество руководителя: Габдуллина Лилия Талгатовна

Должность: учитель математики

Место работы: ГБОУ БРГИ №1 имени Рами Гарипова

Тема: Исследование свойств равносторонних, равноугольных, полуправильных шестиугольников.

Актуальность и новизна работы . В школьных учебниках геометрии содержится очень много сведений – теорем, свойств четырехугольников. Изучены, в том числе, свойства следующих видов четырехугольников:

— равносторонний четырехугольник — ромб,

— равноугольный четырехугольник — прямоугольник,

— правильный четырехугольник — квадрат,

— полуправильный четырехугольник – параллелограмм (у него стороны и углы равны через одного).

Шестиугольник является одним из самых распространенных многоугольников в окружающем нас мире, их содержат в себе кристаллические решетки многих химических элементов. В учебниках геометрии и дополнительных источниках информации содержатся сведения про правильный шестиугольник. Влияние на свойства шестиугольника его равноугольность, равносторонность или же полуправильность (равенство сторон и углов через одного) не рассмотрено, свойства изучены недостаточно, что и вызвало актуальность данного исследования.

Цель работы: выявить закономерности, показывающие взаимосвязь между равенством углов или сторон шестиугольника и его свойствами.

Объект исследования : стороны и углы шестиугольника.

Предмет исследования : свойства равносторонних, равноугольных, полуправильных шестиугольников.

Проблема и задачи. В рамках выполнения данной исследовательской работы решаются следующие проблемы и вытекающие из них задачи:

— определение новых видов шестиугольников;

— изучение их свойств с помощью компьютерной программы «Живая геометрия» и доказательство;

— определение возможностей применения информационно-компьютерных технологий для открытия новых свойств геометрических фигур.

— анализ научной и учебной литературы;

Основные итоги и выводы.

Выведены следующие важные свойства равноугольных шестиугольников:

1) Противоположные стороны параллельны.

2) Биссектрисы углов параллельны сторонам.

3) Сумма двух смежных сторон равна сумме двух противоположных смежных сторон.

4) Три средние линии пересекаются в одной точке.

5) Середины больших диагоналей являются вершинами равностороннего треугольника, а его стороны параллельны сторонам шестиугольника.

Если в шестиугольнике присутствует равноугольность и равносторонность в каких-то комбинациях, то это становится основанием для новых свойств.

Выведены следующие важные свойства полуправильных шестиугольников:

1)Продолжения сторон полуправильного шестиугольника пересекаются под углом 60 ° .

2)Диагонали полуправильного шестиугольника равны.

3) Если около полуправильного шестиугольника можно описать окружность, то его углы равны между собой.

4) Если около полуправильного шестиугольника можно описать окружность, то его стороны равны между собой.

Практическое значение. Результаты и выведенные свойства шестиугольников новых видов могут стать основой для дальнейшего изучения многоугольников различных видов, помогут выяснить геометрические закономерности и соотношения между сторонами и углами многоугольников. Полученные знания способствуют пониманию соотношения между равносторонностью и равноугольностью в шестиугольниках и подойти у изучению темы «Правильные шестиугольники» с другого ракурса.

Тема: Исследование свойств равносторонних, равноугольных, полуправильных шестиугольников.

В школьных учебниках геометрии содержится очень много сведений – теорем, свойств четырехугольников. Изучены, в том числе, свойства следующих видов четырехугольников:

— равносторонний четырехугольник — ромб,

— равноугольный четырехугольник — прямоугольник,

— правильный четырехугольник — квадрат,

— полуправильный четырехугольник – параллелограмм (у него стороны и углы равны через одного).

Шестиугольник является одним из самых распространенных многоугольников в окружающем нас мире, их содержат в себе кристаллические решетки многих химических элементов. В учебниках геометрии и дополнительных источниках информации содержатся сведения про правильный шестиугольник. Влияние на свойства шестиугольника его равноугольность, равносторонность или же полуправильность (равенство сторон и углов через одного) не рассмотрено, свойства изучены недостаточно, что и вызвало актуальность данного исследования.

По итогам нашего исследования мы сделали вывод о том, что равносторонность для шестиугольника более слабое качество, чем равноугольность, у равностороннего шестиугольника никаких интересных свойств нет, т.е. требование равенства всех сторон слишком слабое.

Найти свойства равноугольного шестиугольника помогла следующая конструкция: продлим стороны до пересечения через одну, получим два правильных треугольника.

Выведены следующие важные свойства равноугольных шестиугольников:

1) Противоположные стороны параллельны.

2) Биссектрисы углов параллельны сторонам.

3) Сумма двух смежных сторон равна сумме двух противоположных смежных сторон.

4) Три средние линии пересекаются в одной точке.

5) Середины больших диагоналей являются вершинами равностороннего треугольника, а его стороны параллельны сторонам шестиугольника.

Если в шестиугольнике присутствует равноугольность и равностонность в каких-то комбинациях, то это становится основанием для новых свойств.

Выведены следующие важные свойства полуправильных шестиугольников:

1)Продолжения сторон полуправильного шестиугольника пересекаются под углом 60 ° .

2)Диагонали полуправильного шестиугольника равны.

3) Если около полуправильного шестиугольника можно описать окружность, то его углы равны между собой.

4) Если около полуправильного шестиугольника можно описать окружность, то его стороны равны между собой.

Полученные знания способствуют пониманию соотношения между равносторонностью и равноугольностью в шестиугольниках и подойти у изучению темы «Правильные шестиугольники» с другого ракурса.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector