Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диаграмма состояния сплавов железа с углеродом

Диаграмма состояния сплавов железа с углеродом

Железоуглеродистые сплавы. Диаграмма состояния железо – углерод.

Структуры железоуглеродистых сплавов

Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.

Диаграмма состояния железо – углерод дает основное представление о строении железоуглеродистых сплавов – сталей и чугунов.

Начало изучению диаграммы железо – углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода.

Диаграмма железо – углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – . Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до , то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего углерода.

Диаграмма состояния железо – цементит представлена на рис. 9.1.

Рис. 9.1. Диаграмма состояния железо — цементит

Компоненты и фазы железоуглеродистых сплавов.

Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.

1. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления – 1539 o С 5 o С.

В твердом состоянии железо может находиться в двух модификациях. Полиморфные превращения происходят при температурах 911 o С и 1392 o С. При температуре ниже 911 o С существует с объемно-центрированной кубической решеткой. В интервале температур 911…1392 o С устойчивым является с гранецентрированной кубической решеткой. Выше 1392 o С железо имеет объемно-центрированную кубическую решетку и называется или высокотемпературное . Высокотемпературная модификация не представляет собой новой аллотропической формы. Критическую температуру 911 o С превращения обозначают точкой , а температуру 1392 o С превращения — точкой А4.

При температуре ниже 768 o С железо ферромагнитно, а выше – парамагнитно. Точка Кюри железа 768 o С обозначается А2.

Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (предел прочности – , предел текучести – ) и высокими характеристиками пластичности (относительное удлинение – , а относительное сужение – ). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.

Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.

Железо со многими элементами образует растворы: с металлами – растворы замещения, с углеродом, азотом и водородом – растворы внедрения.

2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления – 3500 0 С, плотность – 2,5 г/см 3 ) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления – 5000 0 С).

В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения – цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).

3. Цементит (Fe3C) – химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода.

Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу.

Температура плавления цементита точно не установлена (1250, 1550 o С). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217 o С.

Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа – металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Цементит – соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

В системе железо – углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.

1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

2. Феррит (Ф) (C) – твердый раствор внедрения углерода в -железо.

Феррит имеет переменную предельную растворимость углерода: минимальную – 0,006 % при комнатной температуре (точка Q), максимальную – 0,02 % при температуре 727 o С ( точка P). Углерод располагается в дефектах решетки.

При температуре выше 1392 o С существует высокотемпературный феррит () ( (C), с предельной растворимостью углерода 0,1 % при температуре 1499 o С (точка J)

Свойства феррита близки к свойствам железа. Он мягок (твердость – 130 НВ, предел прочности –) и пластичен (относительное удлинение –), магнитен до 768 o С.

3. Аустенит (А) (С) – твердый раствор внедрения углерода в -железо.

Углерод занимает место в центре гранецентрированной кубической ячейки.

Аустенит имеет переменную предельную растворимость углерода: минимальную – 0,8 % при температуре 727 o С (точка S), максимальную – 2,14 % при температуре 1147 o С (точка Е).

Аустенит имеет твердость 200…250 НВ, пластичен (относительное удлинение – ), парамагнитен.

При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.

4. Цементит – характеристика дана выше.

В железоуглеродистых сплавах присутствуют фазы: цементит первичный I), цементит вторичный II), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.

Процессы при структурообразовании железоуглеродистых сплавов.

Линия АВСD – ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.

Линия AHJECF – линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 14990С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит:

На участке JЕ заканчивается кристаллизация аустенита. На участке ECF при постоянной температуре 1147 o С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного:

Эвтектика системы железо – цементит называется ледебуритом (Л), по имени немецкого ученого Ледебура, содержит 4,3 % углерода.

При температуре ниже 727 o С в состав ледебурита входят цементит первичный и перлит, его называют ледебурит превращенный (ЛП).

По линии HN начинается превращение феррита () в аустенит, обусловленное полиморфным превращением железа. По линии NJ превращение феррита () в аустенит заканчивается.

По линии GS превращение аустенита в феррит, обусловленное полиморфным превращением железа. По линии PG превращение аустенита в феррит заканчивается.

По линии ES начинается выделение цементита вторичного из аустенита, обусловленное снижением растворимости углерода в аустените при понижении температуры.

По линии МО при постоянной температуре 768 o С имеют место магнитные превращения.

Читайте так же:
Манометр для измерения давления газа в баллоне

По линии PSK при постоянной температуре 727 o С идет эвтектоидное превращение, заключающееся в том, что аустенит, содержащий 0,8 % углерода, превращается в эвтектоидную смесь феррита и цементита вторичного:

По механизму данное превращение похоже на эвтектическое, но протекает в твердом состоянии.

Эвтектоид системы железо – цементит называется перлитом (П), содержит 0,8 % углерода.

Название получил за то, что на полированном и протравленном шлифе наблюдается перламутровый блеск.

Перлит может существовать в зернистой и пластинчатой форме, в зависимости от условий образования.

По линии PQ начинается выделение цементита третичного из феррита, обусловленное снижением растворимости углерода в феррите при понижении температуры.

Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо – цементит, т.е. критические точки, имеют условные обозначения.

Обозначаются буквой А (от французского arret – остановка):

А1 – линия PSK (7270С) – превращение П А;

A2 – линия MO (7680С, т. Кюри) – магнитные превращения;

A3 – линия GOS ( переменная температура, зависящая от содержания углерода в сплаве) – превращение Ф А;

A4 – линия NJ (переменная температура, зависящая от содержания углерода в сплаве) – превращение ;

Acm – линия SE (переменная температура, зависящая от содержания углерода в сплаве) – начало выделения цементита вторичного (иногда обозначается A3).

Так как при нагреве и охлаждении превращения совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е , при охлаждении – букву r, т.е. .

Структуры железоуглеродистых сплавов.

Все сплавы системы железо – цементит по структурному признаку делят на две большие группы: стали и чугуны.

Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их называют техническое железо. Микроструктуры сплавов представлены на рис.9.2. Структура таких сплавов после окончания кристаллизации состоит или из зерен феррита (рис.9.2 а), при содержании углерода менее 0,006 %, или из зерен феррита и кристаллов цементита третичного, расположенных по границам зерен феррита (рис.9.2.б), если содержание углерода от 0,006 до 0,02 %.

Рис.9.2. Микроструктуры технического железа: а – содержание углерода менее 0,006%; б – содержание углерода 0,006…0,02 %

Углеродистыми сталями называют сплавы железа с углеродом, содержащие 0,02…2,14 % углерода, заканчивающие кристаллизацию образованием аустенита.

Они обладают высокой пластичностью, особенно в аустенитном состоянии.

Структура сталей формируется в результате перекристаллизации аустенита. Микроструктуры сталей представлены на рис. 9.3.

Рис. 9.3. Микроструктуры сталей: а – доэвтектоидная сталь ; б – эвтектоидная сталь (пластинчатый перлит); в – эвтектоидная сталь (зернистый перлит); г – заэвтектоидная сталь .

По содержанию углерода и по структуре стали подразделяются на доэвтектоидные , структура феррит + перлит (рис.9.3 а); эвтектоидные , структура перлит (П), перлит может быть пластинчатый или зернистый (рис. 9.3 б и 9.3 в); заэвтектоидные , структура перлит + цементит вторичный (П + ЦII), цементитная сетка располагается вокруг зерен перлита.

По микроструктуре сплавов можно приблизительно определить количество углерода в составе сплава, учитывая следующее: количество углерода в перлите составляет 0,8 %, в цементите – 6,67 %. Ввиду малой ратворимости углерода в феррите, принимается, что в нем углерода нет.

Сплавы железа с углеродом, содержащие углерода более 2,14 % (до 6,67 %), заканчивающие кристаллизацию образованием эвтектики (ледебурита), называют чугунами.

Наличие легкоплавкого ледебурита в структуре чугунов повышает их литейные свойства.

Чугуны, кристаллизующиеся в соответствии с диаграммой состояния железо – цементит, отличаются высокой хрупкостью. Цвет их излома – серебристо-белый. Такие чугуны называются белыми чугунами.

Микроструктуры белых чугунов представлены на рис. 9.4.

Рис. 9.4. Микроструктуры белых чугунов: а – доэвтектический белый чугун; б – эвтектический белый чугун (Л); в – заэвтектический белый чугун .

По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические , структура перлит + ледебурит + цементит вторичный ; эвтектические , структура ледебурит (Л) (рис. 9.4 б); заэвтектические , структура ледебурит + цементит первичный (рис. 9.4 в).

В структуре доэвтектических белых чугунов присутствует цементит вторичный, который образуется в результате изменения состава аустенита при охлаждении (по линии ES). В структуре цементит вторичный сливается с цементитом, входящим в состав ледебурита.

Фазовый состав сталей и чугунов при нормальных температурах один и тот же, они состоят из феррита и цементита. Однако свойства сталей и белых чугунов значительно различаются. Таким образом, основным фактором, определяющим свойства сплавов системы железо – цементит является их структура.

Диаграмма состояния железо–углерод (стабильная) и получение чугунов

Образование стабильной фазы графита в чугуне может происходить в результате непосредственного выделения его из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита.

Процесс образования в чугуне графита называют графитизацией.

Штриховые линии на диаграмме (рис. 1) соответствуют выделению графита.

Графит образуется при очень малой скорости охлаждения, когда степень переохлаждения жидкой фазы невелика.

Ускоренное охлаждение частично или полностью прекращает кристаллизацию графита и способствует образованию цементита.

Наличие в жидком чугуне включений SiO2, Al2O3, и др., а также введение Si способствует процессу графитизации.

Чугуны по технологическим свойствам обладают лучшими литейными характеристиками, чем стали, но малой способностью к пластической деформации (в обычных условиях не поддаются ковке). Чугун дешевле стали по технологии производства.

2. Кристаллизация серого чугуна

Серый чугун получил название по виду излома, который имеет серый цвет (из-за присутствия в структуре сплава свободного углерода – графита).

Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4 – 3,8% С. Такой чугун обладает хорошими литейными свойствами (С не < 2,4%). Содержание углерода > 3,8% способствует большему образованию графита, что ухудшает его механические свойства.

Серый чугун представляет собой по существу тройной сплав Fe – Si – C, в качестве неизбежных примесей находятся: Mn, Р и S.

Диаграмма Fe – C

Кремний (Si) – содержится в количестве 1,2-3,5% – способствует выделению углерода в виде графита (т.е.влияет на строение, а следовательно на свойства чугунов).

Чем больше в чугуне углерода, тем меньше требуется кремния для получения заданной структуры.

Марганец (Mn) содержится в количестве 1,25 – 1,4 % – препятствует процессу графитизации, повышает способность чугуна к отбеливанию.

Сера (S) – содержится в количесве 0,1 – 0,2 % – способствует отбеливанию чугуна, ухудшает механические и литейные свойства. В чугуне находится в виде сульфатов – FeS, MnS или их твердых растворов (Fe, Mn)S.

Фосфор (Р) – содержится в количестве 0,2 – 0,5% –практически не влияет на процесс графитизации; улучшает литейные свойства (жидкотекучесть). Образует соединение Fe3Р, входящее в эвтектику. Способствует повышению твердости, износостойкости, хрупкости.

Рассмотрим кристаллизацию сплава I:

Точка 1 – имеется равновесный набор фазовых и концентрационных флуктуаций.

Точка 2 – объем и размеры фазово-концентрационных флуктуаций увеличивается.

Ниже точки 2 до точки 3 – жидкая фаза насыщается по отношению к аустениту (г-Fe).

Состав аустенита при охлаждении меняется по линии солидус: аЕ’, а состав жидкой фазы: бС’.

В точке 4 жидкая фаза (ЖС) насыщенна одновременно по отношению к аустениту (АС’) и углероду (графиту) и ниже точки 4:

ЖС ⇆ АС’ + Г.

(не называть ледебуритом)

При охлаждении от точки 4 до точки 5 происходит обеднение аустенита углеродом по линии E’S’, в результате выделяется графит который наслаивается на эвтектический графит.

Читайте так же:
Чем склеить металл и пластмассу

Линия Р’S’K’ – линия эвтектоидного равновесия.

Ниже этой линии происходит превращение:

АS ⇄ ФР’ + Г.

Рисунок 2 – Структура графита

где а) кристаллическая решетка;

б) включение выделенное из чугуна

Показать фотографию лепесткового графита и серого чугуна на ферритной основе.

Рисунок 3. Серый чугун на ферритной основе

В серых чугунах графит выделяется в виде пластин, червеобразных прожилок (вермикулярный графит). Длина таких включений больше, чем ширина.

3.Связь структуры чугуна с его свойствами

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей.

Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры.

Чем меньше графитовых включений, чем они мельче и больше степень изолированности их друг от друга, тем выше прочность чугуна.

Пластинки графита уменьшают сопротивление отрыву, предел прочности, и особенно пластичность чугуна. Относительное удлинение при растяжении серого чугуна практически равно нулю (≤ 0,5%).

Однако графитовые включения мало влияют на снижение предела прочности при сжатии и твердость, величина которых определяется структурой металлической основы чугуна.

Поэтому серые чугуны (СЧ) рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Для серых чугунов характерна зависимость:

Включение графита облегчают обрабатываемость резанием, делают стружку ломкой; повышают износоустойчивость и антифрикционные свойства, благодаря смазывающему действию графита; снижает чувствительность к всевозможным внешним концентраторам напряжений; хорошо гасит вибрации и резонансные колебания.

Применяют при изготовлении деталей машин.

4. Структура и маркировка серого чугуна (СЧ)

В зависимости от скорости охлаждения (Vохл) (рис. 4), количества С и Si и других примесей, серый чугун можно разделить на группы (в соответствии с металлической основой):

1) серый чугун на ферритной основе;

2) серый чугун на феррито-перлитной основе;

3) серый чугун на перлитной основе.

Серый чугун маркируют буквами:

С – серый, Ч – чугун (ГОСТ 1412-79). После букв цифры указывают среднюю величину предела прочности при растяжении – уВ (МПа (кгс/мм 2 )).

Получают такой чугун очень медленным охлаждением, когда успевают произойти все диффузионные процессы, или значительным добавлением Si. Весь углерод находится в виде графита.

СЧ18 (ув = 180 н/мм 2 (МПа)).

Получают при более ускоренном охлаждении или с меньшим содержанием Si.

Т.к., с понижением температуры, т.е. с увеличением Vохл диффузионная подвижность атомов (углерода) уменьшается, то часть углерода 0,1 – 0,7% в серых феррито-перлитных чугунах выделяется в связанном состоянии в виде цементита Fe3C.

СЧ21, СЧ24, СЧ25, СЧ28, СЧ30, СЧ32, СЧ35, СЧ36, СЧ40, СЧ45;

СЧ45 (ув = 450 н/мм 2 (МПа)).

Получают более быстрым охлаждением, добавляют минимальное количество Si.

Рисунок 4 – Зависимость структуры серого чугуна от режима охлаждения

В этом чугуне 0,7 – 0,8% С находится в виде Fe3C, входящего в состав перлита.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру. Присутствие в структуре – феррита, не увеличивая пластичности и вязкости чугуна, снижает его прочность и износостойкость. Наименьшая прочность у ферритного СЧ.

5. Применение серых чугунов

СЧ10, СЧ15 – малоответственные детали: строительные колонны, фундаментные плиты, малонагруженные детали сельскохозяйственных (с/х) машин, станков, автомобилей, тракторов, арматуры.

СЧ21 … СЧ45 – ответвленные детали: станины мощных станков и механизмов, поршней, цилиндров; деталей, работающих на износ в условиях больших давлений; компрессорное, арматурное, турбинное литье; дизельные цилиндры, блоки двигателей; детали металлургического оборудования.

Разновидности перлитных СЧ:

Сталистые чугуны (СЧ24, СЧ28): при выплавке в шихту добавляют 20-30% стального лома; эти чугуны имеют пониженное содержание углерода (2,4-2,9 (3,3)%), что обеспечивает получение дисперсного перлита с меньшим количеством графитных включений.

Модифицированные чугуны (СЧ32, СЧ36, СЧ40, СЧ44) – перед разливкой добавляют модификаторы (75%-ный ферросилиций, 0,3-0,8% силикокальций и т.д.). Уменьшается количество и происходит измельчение графитовых включений. Содержание углерода – 2,5-3,0%.

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок, поршневых колец и др.

Марки: АЧС-1, АЧС-2 – перлитный чугун.

АЧС-3 – феррито-перлитный чугун.

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают (500-570 о С, 3-10 часов, напряжения снижаются на 80-90%) или проводят естественное старение – выдержка на складе (6-10 месяцев). Напряжение снижается на 40-50%.

6. Половинчатый чугун (отбеленный)

Отбеленными называют чугунные отливки, в которых поверхностные слои отливок имеют структуру белого (или половинчатого) чугуна, а сердцевина – серого чугуна (или высокопрочного). Между этими зонами есть переходной слой. Отбел на некоторую глубину (12-30мм) является следствием быстрого охлаждения поверхности.

Твердость поверхностного отбеленного слоя (НВ 400-500) обуславливает хорошую сопротивляемость износу. Из отбеленного чугуна изготавливают прокатные валки листовых станов, колеса, шары для мельниц.

Диаграмма состояния сплавов железо-углерод

Часть диаграммы состояния сплавов железо-цементит

Диагра́мма фа́зового равнове́сия (диаграмма состоя́ния) желе́зо—углеро́д (иногда эту диаграмму называют «диаграмма железо—цементит») — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры.

Содержание

Диаграмма состояния

Железо образует с углеродом химическое соединение Fe3C цементит. Так как на практике применяют металлические сплавы на основе железа с содержанием углерода до 5 %, практически интересна часть диаграммы состояния от чистого железа до цементита [1] . Поскольку цементит — метастабильная фаза, то и соответствующая диаграмма называется метастабильной (сплошные линии на рисунке).

Для серых чугунов и графитизированных сталей рассматривают стабильную часть диаграммы железо—графит (Fe—Гр), поскольку именно графит является в этом случае стабильной фазой. Цементит выделяется из расплава намного быстрее графита и во многих сталях и белых чугунах может существовать достаточно долго, несмотря на метастабильность. В серых чугунах графит существует обязательно.

На рисунке тонкими пунктирными линиями показаны линии стабильного равновесия (то есть с участием графита), там где они отличаются от линий метастабильного равновесия (с участием цементита), а соответствующие точки обозначены штрихом. Обозначения фаз и точек на этой диаграмме приведены согласно неофициальному международному соглашению.

Фазы диаграммы железо-углерод

В системе железо — углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях [ источник не указан 1597 дней ] с образованием однородной жидкой фазы.

Феррит имеет переменную, зависящую от температуры предельную растворимость углерода: минимальную — 0,006 % при комнатной температуре (точка Q), максимальную — 0,02 % при температуре 700 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрически эквивалентно) на середине рёбер куба, а также в дефектах решетки [2] .

При температуре выше 1392 °C существует высокотемпературный феррит с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка H).

Свойства феррита близки к свойствам чистого железа. Он мягок (твёрдость по Бринеллю — 130 НВ) и пластичен, ферромагнитен (при отсутствии углерода) до точки Кюри — 770 °C.

Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с гранецентрированной кубической решёткой.

Атомы углерода занимают место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в аустените — 2,14 % при температуре 1147 °C (точка Е). Аустенит имеет твёрдость 200—250 НВ, пластичен, парамагнитен. При растворении других элементов в аустените или в феррите изменяются свойства и температурные границы их существования [3] .

Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит — метастабильная фаза и при длительном нагреве самопроизвольно разлагается с выделением графита.

Читайте так же:
Что значит обсадная труба

В железоуглеродистых сплавах цементит как фаза может выделяться при различных условиях:

  • цементит первичный (выделяется из жидкости),
  • цементит вторичный (выделяется из аустенита),
  • цементит третичный (из феррита),
  • цементит эвтектический и цементит.

Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зёрен аустенита (после эвтектоидного превращения они станут зёрнами перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зёрен [4] .

Эвтектический цементит наблюдается лишь в белых чугунах. Эвтектоидный цементит имеет пластинчатую форму и является составной частью перлита. Цементит может при специальном сфероидизируюшем отжиге или закалке с высоким отпуском выделяться в виде мелких сфер. Влияние на механические свойства сплавов оказывает форма, размер, количество и расположение включений цементита, что позволяет на практике для каждого конкретного применения сплава добиваться оптимального сочетания твёрдости, прочности, стойкости к хрупкому разрушению и т. п. [5]

Графит — фаза состоящая только из углерода со слоистой гексагональной решёткой. Плотность графита (2,3 г/см 3 ) намного меньше плотности всех остальных фаз (около 7,5—7,8 г/см 3 ) и это затрудняет и замедляет его образование, что и приводит к выделению цементита при более быстром охлаждении. Образование графита уменьшает усадку при кристаллизации, графит выполняет роль смазки при трении, уменьшая износ, способствует рассеянию энергии вибраций.

Графит имеет форму крупных крабовидных (изогнутых пластинчатых) включений (обычный серый чугун) или сфер (высокопрочный чугун).

Графит обязательно присутствует в серых чугунах и их разновидности — высокопрочных чугунах. Графит присутствует также и в некоторых марках стали — в так называемых графитизированных сталях.

Фазовые переходы

Линия ACD — это линия ликвидуса, показывающая температуры начала затвердевания (конца плавления) сталей и белых чугунов. При температурах выше линии ACD — жидкий сплав. Линия AECF — это линия солидуса, показывающая температуры конца затвердевания (начала плавления).

По линии ликвидуса АС (при температурах, отвечающих линии АС) из жидкого сплава кристаллизуется аустенит, а по линии ликвидуса CD — цементит, называемый первичным цементитом. В точке С при 1147 °С и содержании 4,3 % углерода из жидкого сплава одновременно кристаллизуется аустенит и цементит первичный, образуя эвтектику, называемую ледебуритом. При температурах, соответствующих линии солидуса AE, сплавы с содержанием углерода до 2,14 % окончательно затвердевают с образованием структуры аустенита. На линии солидуса EC (1147° С) сплавы с содержанием углерода от 2,14 до 4,3 % окончательно затвердевают с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделялся аустенит, следовательно, такие сплавы после затвердевания будут иметь структуру аустенит + ледебурит.

На линии солидуса CF (1147 °С) сплавы с содержанием углерода от 4,3 до 6,67 % окончательно затвердевают также с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделялся цементит (первичный), следовательно, такие сплавы после затвердевания будут иметь структуру — первичный цементит + ледебурит [6] .

В области ACEA, между линией ликвидуса AC и солидуса AEC, будет жидкий сплав + кристаллы аустенита. В области CDF, между линией ликвидуса CD и солидуса CF, будет жидкий сплав + кристаллы цементита (первичного). Превращения, протекающие при затвердевании сплавов, называют первичной кристаллизацией. В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14 % образуется однофазная структура — аустенит. Сплавы железа с углеродом, в которых в результате первичной кристаллизации в равновесных условиях получается аустенитная структура, называют сталями.

Сплавы с содержанием углерода более 2,14 %, в которых при кристаллизации образуется эвтектика ледебурит, называют чугунами. В рассматриваемой системе практически весь углерод находится в связанном состоянии, в виде цементита. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми [4] .

В железоуглеродистых сплавах превращения происходят также и в твердом состоянии, называемые вторичной кристаллизацией и характеризуемые линиями GSE, PSK, PQ. Линия GS показывает начало превращения аустенита в феррит (при охлаждении). Следовательно, в области GSP будет структура аустенит + феррит.

Линия SE показывает, что с понижением температуры растворимость углерода в аустените уменьшается. Так, при 1147 °С в аустените может раствориться углерода 2,14 %, а при 727°С — 0,8 %. С понижением температуры в сталях с содержанием углерода от 0,8 до 2,14 % из аустенита выделяется избыточный углерод в виде цементита, называемого вторичным. Следовательно, ниже линии SE (до температуры 727°С) сталь имеет структуру: аустенит + цементит (вторичный). В чугунах с содержанием углерода от 2,14 до 4,3 % при 1147 °С, кроме ледебурита, есть аустенит, из которого при понижении температуры тоже будет выделяться вторичный цементит. Следовательно, ниже линии EC (до температуры 727 °С) белый чугун имеет структуру: ледебурит + аустенит + цементит вторичный.

Линия PSK (727° С) — это линия эвтектоидного превращения. На этой линии во всех железоуглеродистых сплавах аустенит распадается, образуя структуру, представляющую собой механическую смесь феррита и цементита и называемую перлитом. Ниже 727°С железоуглеродистые сплавы имеют следующие структуры.

  • Стали, содержащие углерода менее 0,8 %, имеют структуру феррит + перлит и называются доэвтектоидными сталями.
  • Сталь с содержанием углерода 0,8 % имеет структуру перлита и называется эвтектоидной сталью.
  • Стали с содержанием углерода от 0,8 до 2,14 % имеют структуру цементит + перлит и называются заэвтектоидными сталями.
  • Белые чугуны с содержанием углерода от 2,14 до 4,3 % имеют структуру перлит + вторичный цементит + ледебурит и называются доэвтектическими чугунами.
  • Белый чугун с содержанием углерода 4,3 % имеет структуру ледебурита и называется эвтектическим чугуном.
  • Белые чугуны с содержанием углерода от 4,3 до 6,67 % имеют структуру цементит первичный + ледебурит и называются заэвтектическими чугунами [5] .

Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02 % при 727 °С до 0,006 % при комнатной температуре. При охлаждении ниже температуры 727° С из феррита выделяется избыточный углерод в виде цементита, называемого третичным. В большинстве сплавов железа с углеродом третичный цементит в структуре можно не учитывать из-за весьма малых его количеств. Однако в низкоуглеродистых сталях в условиях медленного охлаждения третичный цементит выделяется по границам зерен феррита (рис. 76). Эти выделения уменьшают пластические свойства стали, особенно способность к холодной штамповке [5] .

Диаграмма состояния сплавов железо-углерод

Часть диаграммы состояния сплавов железо-цементит

Диагра́мма фа́зового равнове́сия (диаграмма состоя́ния) желе́зо—углеро́д (иногда эту диаграмму называют «диаграмма железо—цементит») — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры.

Содержание

Диаграмма состояния [ | код ]

Железо образует с углеродом химическое соединение Fe3C цементит. Так как на практике применяют металлические сплавы на основе железа с содержанием углерода до 5 %, практически интересна часть диаграммы состояния от чистого железа до цементита [1] . Поскольку цементит — метастабильная фаза, то и соответствующая диаграмма называется метастабильной (сплошные линии на рисунке).

Для серых чугунов и графитизированных сталей рассматривают стабильную часть диаграммы железо—графит (Fe—Гр), поскольку именно графит является в этом случае стабильной фазой. Цементит выделяется из расплава намного быстрее графита и во многих сталях и белых чугунах может существовать достаточно долго, несмотря на метастабильность. В серых чугунах графит существует обязательно.

На рисунке тонкими пунктирными линиями показаны линии стабильного равновесия (то есть с участием графита), там где они отличаются от линий метастабильного равновесия (с участием цементита), а соответствующие точки обозначены штрихом. Обозначения фаз и точек на этой диаграмме приведены согласно неофициальному международному соглашению.

Читайте так же:
Майкл фарадей открытие электромагнитной индукции

Фазы диаграммы железо-углерод [ | код ]

В системе железо — углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит, графит.

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях [ источник не указан 1597 дней ] с образованием однородной жидкой фазы.

Феррит имеет переменную, зависящую от температуры предельную растворимость углерода: минимальную — 0,006 % при комнатной температуре (точка Q), максимальную — 0,02 % при температуре 700 °C (точка P). Атомы углерода располагаются в центре грани или (что кристаллогеометрически эквивалентно) на середине рёбер куба, а также в дефектах решетки [2] .

При температуре выше 1392 °C существует высокотемпературный феррит с предельной растворимостью углерода около 0,1 % при температуре около 1500 °C (точка H).

Свойства феррита близки к свойствам чистого железа. Он мягок (твёрдость по Бринеллю — 130 НВ) и пластичен, ферромагнитен (при отсутствии углерода) до точки Кюри — 770 °C.

Аустенит (γ) — твёрдый раствор внедрения углерода в γ-железе с гранецентрированной кубической решёткой.

Атомы углерода занимают место в центре гранецентрированной кубической ячейки. Предельная растворимость углерода в аустените — 2,14 % при температуре 1147 °C (точка Е). Аустенит имеет твёрдость 200—250 НВ, пластичен, парамагнитен. При растворении других элементов в аустените или в феррите изменяются свойства и температурные границы их существования [3] .

Цементит (Fe3C) — химическое соединение железа с углеродом (карбид железа), со сложной ромбической решёткой, содержит 6,67 % углерода. Он твёрдый (свыше 1000 HВ), и очень хрупкий. Цементит — метастабильная фаза и при длительном нагреве самопроизвольно разлагается с выделением графита.

В железоуглеродистых сплавах цементит как фаза может выделяться при различных условиях:

  • цементит первичный (выделяется из жидкости),
  • цементит вторичный (выделяется из аустенита),
  • цементит третичный (из феррита),
  • цементит эвтектический и цементит.

Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зёрен аустенита (после эвтектоидного превращения они станут зёрнами перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зёрен [4] .

Эвтектический цементит наблюдается лишь в белых чугунах. Эвтектоидный цементит имеет пластинчатую форму и является составной частью перлита. Цементит может при специальном сфероидизируюшем отжиге или закалке с высоким отпуском выделяться в виде мелких сфер. Влияние на механические свойства сплавов оказывает форма, размер, количество и расположение включений цементита, что позволяет на практике для каждого конкретного применения сплава добиваться оптимального сочетания твёрдости, прочности, стойкости к хрупкому разрушению и т. п. [5]

Графит — фаза состоящая только из углерода со слоистой гексагональной решёткой. Плотность графита (2,3 г/см 3 ) намного меньше плотности всех остальных фаз (около 7,5—7,8 г/см 3 ) и это затрудняет и замедляет его образование, что и приводит к выделению цементита при более быстром охлаждении. Образование графита уменьшает усадку при кристаллизации, графит выполняет роль смазки при трении, уменьшая износ, способствует рассеянию энергии вибраций.

Графит имеет форму крупных крабовидных (изогнутых пластинчатых) включений (обычный серый чугун) или сфер (высокопрочный чугун).

Графит обязательно присутствует в серых чугунах и их разновидности — высокопрочных чугунах. Графит присутствует также и в некоторых марках стали — в так называемых графитизированных сталях.

Фазовые переходы [ | код ]

Линия ACD — это линия ликвидуса, показывающая температуры начала затвердевания (конца плавления) сталей и белых чугунов. При температурах выше линии ACD — жидкий сплав. Линия AECF — это линия солидуса, показывающая температуры конца затвердевания (начала плавления).

По линии ликвидуса АС (при температурах, отвечающих линии АС) из жидкого сплава кристаллизуется аустенит, а по линии ликвидуса CD — цементит, называемый первичным цементитом. В точке С при 1147 °С и содержании 4,3 % углерода из жидкого сплава одновременно кристаллизуется аустенит и цементит первичный, образуя эвтектику, называемую ледебуритом. При температурах, соответствующих линии солидуса AE, сплавы с содержанием углерода до 2,14 % окончательно затвердевают с образованием структуры аустенита. На линии солидуса EC (1147° С) сплавы с содержанием углерода от 2,14 до 4,3 % окончательно затвердевают с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделялся аустенит, следовательно, такие сплавы после затвердевания будут иметь структуру аустенит + ледебурит.

На линии солидуса CF (1147 °С) сплавы с содержанием углерода от 4,3 до 6,67 % окончательно затвердевают также с образованием эвтектики ледебурита. Так как при более высоких температурах из жидкого сплава выделялся цементит (первичный), следовательно, такие сплавы после затвердевания будут иметь структуру — первичный цементит + ледебурит [6] .

В области ACEA, между линией ликвидуса AC и солидуса AEC, будет жидкий сплав + кристаллы аустенита. В области CDF, между линией ликвидуса CD и солидуса CF, будет жидкий сплав + кристаллы цементита (первичного). Превращения, протекающие при затвердевании сплавов, называют первичной кристаллизацией. В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14 % образуется однофазная структура — аустенит. Сплавы железа с углеродом, в которых в результате первичной кристаллизации в равновесных условиях получается аустенитная структура, называют сталями.

Сплавы с содержанием углерода более 2,14 %, в которых при кристаллизации образуется эвтектика ледебурит, называют чугунами. В рассматриваемой системе практически весь углерод находится в связанном состоянии, в виде цементита. Излом таких чугунов светлый, блестящий (белый излом), поэтому такие чугуны называют белыми [4] .

В железоуглеродистых сплавах превращения происходят также и в твердом состоянии, называемые вторичной кристаллизацией и характеризуемые линиями GSE, PSK, PQ. Линия GS показывает начало превращения аустенита в феррит (при охлаждении). Следовательно, в области GSP будет структура аустенит + феррит.

Линия SE показывает, что с понижением температуры растворимость углерода в аустените уменьшается. Так, при 1147 °С в аустените может раствориться углерода 2,14 %, а при 727°С — 0,8 %. С понижением температуры в сталях с содержанием углерода от 0,8 до 2,14 % из аустенита выделяется избыточный углерод в виде цементита, называемого вторичным. Следовательно, ниже линии SE (до температуры 727°С) сталь имеет структуру: аустенит + цементит (вторичный). В чугунах с содержанием углерода от 2,14 до 4,3 % при 1147 °С, кроме ледебурита, есть аустенит, из которого при понижении температуры тоже будет выделяться вторичный цементит. Следовательно, ниже линии EC (до температуры 727 °С) белый чугун имеет структуру: ледебурит + аустенит + цементит вторичный.

Линия PSK (727° С) — это линия эвтектоидного превращения. На этой линии во всех железоуглеродистых сплавах аустенит распадается, образуя структуру, представляющую собой механическую смесь феррита и цементита и называемую перлитом. Ниже 727°С железоуглеродистые сплавы имеют следующие структуры.

  • Стали, содержащие углерода менее 0,8 %, имеют структуру феррит + перлит и называются доэвтектоидными сталями.
  • Сталь с содержанием углерода 0,8 % имеет структуру перлита и называется эвтектоидной сталью.
  • Стали с содержанием углерода от 0,8 до 2,14 % имеют структуру цементит + перлит и называются заэвтектоидными сталями.
  • Белые чугуны с содержанием углерода от 2,14 до 4,3 % имеют структуру перлит + вторичный цементит + ледебурит и называются доэвтектическими чугунами.
  • Белый чугун с содержанием углерода 4,3 % имеет структуру ледебурита и называется эвтектическим чугуном.
  • Белые чугуны с содержанием углерода от 4,3 до 6,67 % имеют структуру цементит первичный + ледебурит и называются заэвтектическими чугунами [5] .

Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02 % при 727 °С до 0,006 % при комнатной температуре. При охлаждении ниже температуры 727° С из феррита выделяется избыточный углерод в виде цементита, называемого третичным. В большинстве сплавов железа с углеродом третичный цементит в структуре можно не учитывать из-за весьма малых его количеств. Однако в низкоуглеродистых сталях в условиях медленного охлаждения третичный цементит выделяется по границам зерен феррита (рис. 76). Эти выделения уменьшают пластические свойства стали, особенно способность к холодной штамповке [5] .

Читайте так же:
Ковка ножа из клапана

Диаграмма состояния сплавов железа с углеродом

2.1.1. Система «железо -цементит»

Равновесное состояние железоуглеродистых сплавов в зависимости от содержания углерода и температуры описывает диаграмма состояния железо — углерод. На диаграмме состояния железоуглеродистых сплавов (рис. 1) на оси ординат отложена температура, на оси абсцисс — содержание в сплавах углерода до 6,67%, то есть до такого количества, при котором образуется цементит Fе3С. По диаграмме состояния системы железо — углерод судят о структуре медленно охлажденных сплавов, а также о возможности изменения их микроструктуры в результате термической обработки, определяющей эксплуатационные свойства. На диаграмме состояния Fe — Fе3С приняты международные обозначения. Сплошными линиями показана диаграмма состояния железо — цементит (метастабильная, так как возможен распад цементита), а пунктирными — диаграмма состояния железо — графит <стабильная).

Рассматриваемую диаграмму правильнее считать не железоуглеродистой (Fe — С), а железоцементитной (Fe — Fе3С), так как свободного углерода в сплавах не содержится. Но так как содержание углерода пропорционально содержанию цементита, то практически удобнее все изменения структуры сплавов связывать с различным содержанием углерода.

Компоненты системы железо и углерод — элементы полиморфные. Основной компонент системы — железо.

Углерод растворим в железе в жидком и твердом состояниях, а также может образовать химическое соединение — цементит Fе3С или присутствовать в сплавах в виде графита.

В системе железо-цементит (Fe — Fе3С) имеются следующие фазы: жидкий раствор. твердые растворы — феррит и аустенит, а также химическое соединение — цементит.

Феррит может иметь две модификации — высоко- и низкотемпературную. Высоко­температурная модификация d -Fe и низкотемпературная — a -Fe представляют собой твердые растворы углерода, соответственно, в d — и a — железе.

Предельное содержание углерода в a -Fe при 723°С -0,02%, а при 20°С — 0,006%. Низкотемпературный феррит a -Fe по свойствам близок к чистому железу и имеет довольно низкие механические свойства, например, при 0,06% С:

твердость — 80. 90 НВ.

Аустенит g -Fe — твердый раствор углерода в g -железе. Предельная растворимость углерода в g -железе 2,14%. Он устойчив только при высоких температурах, а с некоторым примесями (Мn, Сг и др.) при обычных (даже низких) температурах. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость аустенита 160. 200 НВ.

Цементит Fе3С — химическое соединение железа с углеродом, содержащее 6,67% vглерода. Между атомами железа и углерода в цементите действуют металлическая и ковалентная связи. Температура плавления

1250°С. Цементит является метастабильной фазой; область его гомогенности очень узкая и на диаграмме состояния он изображается вертикалью. Время его устойчивости уменьшается с повышением температуры: при низких температурах он существует бесконечно долго, а при температурах, превышающих 950°С, за несколько часов распадается на железо и графит. Цементит имеет точку Кюри (210°С) и обладает сравнительно высокими твердостью (800 НВ и выше) и хрупкостью. Прочность его i растяжение очень мала ( s =40 МПа).

В системе железо — цементит имеются две тонкие механические смеси фаз — эвтектическая (ледебурит) и эвтектоидная (перлит).

Ледебурит является смесью двух фаз g -Fe + Fе3С, образующихся при 1130°С в спла­вах, содержащих от 2,0 до 6,67%С, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов, главным образом, чугунов. Ледебурит обладает достаточно высокими прочностью (НВ>600) и хрупкостью.

Перлит (до 2,0%С) представляет собой смесь a-Fe + Fе3С (в легированных сталях -карбидов), образующуюся при 723°С и содержании углерода 0,83% в процессе распада аустенита, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов. Механические свойства перлита зависят от формы и дисперсности частичек цементита (прочность пластинчатого перлита несколько выше, чем зернистого):

Диаграмма состояния Fe — Fе3С (рис. 1) является комбинацией диаграмм простых типов. На ней имеются три горизонтали трехфазных равновесий: перитектического (1496°С), эвтектического (1147°С) и эвтектоидного (727°С).

Все линии на диаграмме состояния соответствуют критическим точкам, то есть температурам, при которых происходят фазовые и структурные превращения в железоуглеродистых сплавах.

Линия ABCD — линия начала кристаллизации сплава (ликвидус), линия AHJECF — линия конца кристаллизации сплава (солидус).

В области диаграммы HJCE находится смесь двух фаз: жидкого раствора и аустенита, а в области CFD — жидкого раствора и цементита. В точке С при содержании 4,3%С и температуре 1130°С происходит одновременная кристаллизация аустенита и цементита и образу­ется их тонкая механическая смесь — ледебурит. Ледебурит присутствует во всех сплавах, содержащих от 2,0 до 6,67%С (чутуны).

Точка Е соответствует предельному насыщению железа углеродом (2,0%С).

В области диаграммы AGSF находится аустенит. При охлаждении сплавов аустенит распадается с выделением по линии GS феррита, а по линии SE — вторичного цементита. Линии GS и PS имеют большое практическое значение для установления режимов термической обработки сталей. Линию GS называют линией верхних критических точек, а линию PS —нижних критических точек.

В области диаграммы GSP находится смесь двух фаз — феррита и распадющегося аустенита, а в области диаграммы SEE’ — смесь вторичного цементита и распадающегося аустенита.

В точке S при содержании 0,8%С и при температуре 723°С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита — перлит.

Линия PSK соответствует окончательному распаду аустенита и образованию перлита. В области ниже линии PSK никаких изменений структуры не происходит.

Структурные превращения в сплавах, находящихся в твердом состоянии, вызваны следующими причинами: изменением растворимости углерода в железе в зависимости от температуры сплава (QP и SE), полиморфизмом железа (PSK) и влиянием содержания рас­творенного углерода на температуру полиморфных превращений (растворение углерода в железе способствует расширению температурной области существования аустенита и сужению области феррита).

Диаграмма стабильного равновесия Fe — Fе3С, обозначенная на рис. 1 пунктиром, отображает возможность образования высокоуглеродистой фазы — графита — на всех этапах структурообразования в сплавах с повышенным содержанием углерода. Диаграмма состояния стабильной системы железо — графит отличается от метастабильной системы железо-цементит только в той части, где в фазовых равновесиях участвует высокоуглеродистая фаза (графит или цементит).

На диаграмме состояния различают две области: стали и чугуны. Условия принятого разграничения — возможность образования ледебурита (предельная растворимость углерода в аустените):

стали — до 2,14% С, не содержат ледебурита;

чугуны — более 2,14% С, содержат ледебурит.

В зависимости от содержания углерода (%) железоуглеродистые сплавы получили следующие названия:

• менее 0,83 — доэвтектоидные стали;

0,83 — эвтектоидные стали;

0,83. 2 — заэвтектоидные стали;

• 2. 4,3 — доэвтектические чугуны;

4,3. 6,67 — заэвтектические чугуны.

Сплавляя железо с углеродом и варьируя содержание компонентов, получают сплавы с различными структурой и свойствами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector