Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диодный мост из двойных диодов шоттки

Диодный мост из двойных диодов шоттки

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает цепях источников питания. Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) время случаются крайне редко, что является показателем тех успехов, которые были достигнуты пятилетие производителями силовой полупроводниковой электроники. Одним проблематичных узлов современных блоков питания становятся вторичные выпрямители Шоттки, что обусловлено большими значениями выходных токов блока питания. Именно высокая частота отказов диодов Шоттки стала основанием для появления этой публикации нашего журнала.

Диод Шоттки (назван немецкого физика Baльтера Шоттки) – полупроводниковый диод падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник барьера Шоттки (вместо перехода, как диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено (MBR40250 большинство диодов Шоттки применяется цепях при обратном напряжении порядка единиц

Достоинства диодов Шоттки

время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 – 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 – 0.4 малое прямое падение напряжения присуще только диодам Шоттки обратным напряжением порядка десятков вольт. обратных напряжениях, прямое падение становится сравнимым параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 возможным обратным напряжением (150 В) при прямом токе падение напряжение нормируется от 0.75 В (T = 125°C) до 1.07 В (T = −55°C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода. используется микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов. электронике малая ёмкость перехода короткое время восстановления) позволяет строить выпрямители, работающие кГц Например, диод MBR4015 (15 В, оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до

Благодаря лучшим временным характеристикам емкостям перехода, выпрямители Шоттки отличаются диодных выпрямителей пониженным уровнем помех, что делает предпочтительными для применения блоках питания аналоговой аппаратуры.

Недостатки диодов Шоттки

при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит диодов, которые переходят обратного пробоя, условии непревышения рассеиваемой максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими температуры кристалла. 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. диодов ТО-220 обратный ток может превышать величину миллиампер до при +125°C). условиях теплоотвода положительная обратная связь по теплу Шоттки приводит катастрофическому перегреву.

характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. прямых смещений ток экспоненциально растёт приложенного напряжения. обратных смещений ток случаях, при прямом смещении, ток Шоттки обусловлен основными носителями электронами.

shotki 1

По этой причине диоды барьера Шоттки являются быстродействующими приборами, поскольку отсутствуют рекомбинационные процессы. Несимметричность характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока структурах обусловлена изменением числа носителей, принимающих участие зарядопереноса. напряжения заключается числа электронов, переходящих части барьерной структуры

Диоды Шоттки питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит очень серьезно относиться быстродействия выпрямителей потерь. Решение этих вопросов способно значительно увеличить КПД источников питания надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь режима короткого замыкания при переключении, сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки каналах обусловлено следующими соображениями:

1) Диод Шоттки является практически безынерционным прибором малым временем восстановления обратного сопротивления, что приводит обратного вторичного тока и броска тока через коллекторы силовых транзисторов первичной части переключения диода. степени снижает нагрузку транзисторы, и, как результат, увеличивает надежность блока питания.

2) Прямое падение напряжения Шоки также очень мало, что при величине тока обеспечивает значительный выигрыш

Так как блоках питания очень мощным становится напряжения +12В, то применение диодов Шоттки канале также значительный энергетический эффект, однако +12В нецелесообразно. что при обратном напряжении свыше 50В (а +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго этом возникают значительные обратные токи утечки), что приводит всех преимуществ Поэтому +12В используются быстродействующие кремниевые импульсные диоды. сейчас выпускаются диоды Шоттки и обратным напряжением, но питания считается нецелесообразным по разным причинам, числе плана. правилах имеются исключения, поэтому блоках питания можно встретить диодные сборки Шоттки и +12В.

В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки диодов (диодные полумосты), что однозначно повышает технологичность блоков питания, улучшает условия охлаждения диодов. Использование отдельных диодов а сборок, является сейчас показателем низкокачественного блока питания.

shotki 6

Диодные сборки выпускается, типах корпусов

diodishotki 2

— TO-220 (менее мощные сборки токами до иногда до 25-30А);

— TO-247 (более мощные сборки токами

— TO-3P (мощные сборки).

Электрическая схема диодной сборки Шоттки представлены на

diodishotki 4

Электрические характеристики диодных сборок, наиболее часто используемых системных блоках питания представлены

Взаимозаменяемость диодных сборок определяется, исходя из Естественно, что при невозможности использовать диодную сборку характеристиками, лучше проводить замену значениями тока случае гарантировать стабильную работу блока питания будет невозможно. Известны случаи, когда производители применяют блоках питания диодные сборки запасом по мощности (хотя чаще приходится наблюдать ситуацию, как раз, обратную), ремонте можно установить прибор значениями тока или напряжения. Однако при такой замене необходимо самым тщательным образом проанализировать характеристики блока питания нагрузки, ответственность такой доработки, естественно, ложится специалиста, производящего ремонт.

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной проблем современных блоков питания. предварительным признакам можно предположительно определить Таких признаков несколько.

при пробоях вторичных выпрямительных диодов, как правило, срабатывает защита, питания проявляться

1) При включении блока питания вентилятор «дергается», совершает несколько оборотов после этого выходные напряжения полностью отсутствуют, источник питания блокируется.

2) После включения блока питания вентилятор «дергается» постоянно, блока питания можно наблюдать пульсации напряжения, защита срабатывает периодически, питания при этом полностью

3) Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, они установлены.

4) Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что питания схемотехникой, утечки выпрямительных диодов приводят первичной цепи и тока через силовые транзисторы, что может стать причиной Таким образом, профессиональный подход блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Читайте так же:
Диф автомат что это такое в электрике

Диагностика диодов Шоттки

Проверка диагностика диодов Шоттки, является достаточно непростым делом, многое здесь определяется типом используемого измерительного прибора подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки особого труда. необходимо выпаять диодную сборку тестером оба диода согласно схеме диагностике тестер необходимо установить проверки диодов. Неисправный диод направлениях покажет одинаковое сопротивление (как правило, очень малое, покажет короткое замыкание), что непригодность для дальнейшего использования. Однако явные пробои диодных сборок встречаются очень

diodishotki 3

В приходится иметь дело (причем зачастую утечками) диодов Шоттки. утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером «диод» является большинстве случаев полностью исправным. Гарантированную точность диагностики, взгляд, позволяет дать только такой метод, как замена диода исправный аналогичный прибор.

Но выявить «подозрительный» диод можно попытаться методики, заключающейся сопротивления его обратного перехода. будем пользоваться проверки диодов, омметром.

Внимание! этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений [20К] обратное сопротивление диода практика, исправные диоды пределе измерений должны показывать бесконечно большое сопротивление.

shotki 5

при измерении выявляется некоторое, как правило, небольшое сопротивление то такой диод можно считать «очень подозрительным» лучше заменить, или проверить методом замены. проводить проверку измерений [200К], то даже исправные диоды могут показывать направлении очень небольшое сопротивление (единицы кОм), поэтому использовать предел [20К]. Естественно, что пределах измерений (2 Мом, даже абсолютно исправный диод оказывается полностью открытым, его переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. [200К] можно проводить проверку сравнительным методом, брать гарантированно-исправный диод, измерять его обратное сопротивление проверяемого диода. Значительные отличия измерениях будут указывать замены диодной сборки.

Иногда встречаются ситуации, когда выходит только один сборки. случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление.

Предложенную методику можно дополнить еще устойчивость. проверки заключается момент времени, когда проверяется сопротивление обратного перехода измерений [20K] абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев Неисправная диодная сборка практически мгновенно начинает «плыть», сопротивление начинает очень быстро уменьшаться, время как исправная диодная сборка достаточно долго удерживает обратное сопротивление большом значении. очень важна, при работе диодная сборка сильно нагревается нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки колебаниям, ведь увеличение температуры корпуса до 125°C увеличивает значение обратного тока утечки раз

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками злоупотреблять, проводить проверки большом пределе измерений сопротивления сильно разогревать диод, теоретически, все это может привести

Кроме того, отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим пайки). отдать должное производителям диодов, так как многие добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C

Особенность сборки диодного моста для сварочного аппарата

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).

Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Особенность выпрямителей

Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Читайте так же:
Что такое профильная труба фото

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Установка

При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Принцип работы диодного моста. Как проверить диодный мост.

Диодный мост – простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать принцип работы диодного моста и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

Принцип работы

Давайте разберем, как работает данное устройство. Оно собирается из диодов – элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера – в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

схема диодного моста выпрямителя

Состав и принцип работы диода

У диода имеется два контакта – анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

Классический диодный мост

Стандартная схема диодного моста выпрямителя содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два – запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.

принцип работы диодного моста

Принцип работы классического моста

Изучая, как собрать диодный мост, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел.

Посмотрите обзорное видео с канала “Радиолюбитель TV”.

Как проверить диод

Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.

Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:

  • пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
  • обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
  • утечка. В этом случае диод проводит незначительный обратный ток.

При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.

Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B .

Любой диод имеет два вывода: катод и анод . Катод помечен серебристой полоской.

Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.

Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.

Подключив щупы, к аноду (красный + ), а к катоду (черный ), мы видим значения на дисплее — это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.

Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.

На этом процедура проверки диода закончена – диод исправен.

Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит . Такой диод проводит ток в любом направлении.

Читайте так же:
Кран быстрого нагрева воды отзывы

Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв . Он вообще не проводит ток.

Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр . Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.

Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке.

Теперь мы знаем, как проверить диод, можем приступить к проверке диодного моста.

Как проверить диодный мост

Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.

Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе. Она поможет протестировать каждый диод и не запутаться с выводами.

Тест диода D1 – выводы 1;3.

Тест диода D2 – выводы 3;4.

Тест диода D3 – выводы 1;2.

Тест диода D4 – выводы 2;4.

В данном случае все диоды работают исправно, такой диодный мост рабочий.

Также вы можете посмотреть видео по проверке диодного моста с канала “ElectronicsClub”

Мощные диоды шоттки с малым падением напряжения

Компания International Rectifier представила новую линейку диодов Шоттки на 15 и 20 В для серво- и телеком приложений, которые предназначены для выпрямления во вторичных цепях ВЧ преобразователей, в том числе и OR-цепях с малым прямым падением напряжения.

Значение прямого падения напряжения новых диодов IR на 25% ниже существующих индустриальных аналогов, кроме того на 14% снижен параметр обратного тока утечки, что позволит разработчикам достигнуть максимальной эффективности всей системы и снизить потери мощности.

Диод 80CPTN015 (корпус TO-247) выполнен по канавочной технологии, имеет рабочее напряжение 15 В и позволяет выдерживать высокую температуру перехода до 150°С. По сравнению с аналогичными индустриальными стандартами, диод Шоттки 80CPTN015 IR имеет на 12% меньшее прямое падение напряжения и на 68% меньший обратный ток утечки. Максимальное прямое падение напряжения составляет 340 мВ при нагрузке 40 А (125°С). Это на 10% сокращает мощность рассеяния и позволяет считать диод 80CPTN015 лучшим выбором для выпрямления цепей с выходным напряжением 5 В в приложениях, где эффективность является критическим моментом.

Диод 80CPT015 имеет номинальные параметры 15 В/80 А, также выполнен на основе канавочной технологии, значение прямого падения напряжения составляет 270 мВ при температуре 125°С. Благодаря сверхнизкому прямому падению напряжения диод идеально подходит для применения в ВЧ преобразователях и источниках питания с выходным напряжением 1.5 В. Диод в корпусе TO-247 имеет на 20% улучшенную характеристику прямого падения напряжения и на 14% меньший обратный ток утечки по сравнению с типичными диодами Шоттки. Благодаря этому диод 80CPT015 является лучшим решением для выпрямления ORing цепей, а также для цепей с выходным напряжением
до 12 В.

Диоды 60CTT015 и 60CTTN015 выполнены в корпусе ТО-220 и нормированы на 15 В, типичное прямое падение напряжения составляет 0.28 В при нагрузке 30 А и 0.33 В при токе 60 А. 60CTT015 является ORing диодом Шоттки и предназначен для приложений, где требуется малое значение прямого падения напряжения. Минимальный обратный ток утечки 60CTTN015 диода – 250 мА (125°С) позволяет использовать его в приложениях с температурным переходом вплоть до 150°С.

Диод 80CNT020 выполнен в корпусе D61, нормирован на входное напряжение 20 В, падение напряжения составляет 240 мВ при 125°С, что на 25% ниже индустриальных стандартов. Диод предназначен для высокоточных ORing приложений с выходом до 15 В.
Диапазон рабочих температур: -55…+125°С

Дата: 14.06.2018 // 0 Комментариев

Мощные диоды шоттки с малым падением напряжения

Для самодельных схем, радиолюбители частенько применяют выпрямительные мосты на диодах Шоттки. Использование диодов Шоттки в мостах обусловлено низким падением напряжения на диоде, что влечет за собой меньшие потери на мосту и снижает его нагрев. Большинство диодов Шоттки выпускаются сдвоенными, в корпусах с общим катодом, и сборка моста из такого диода вводит новичка в тупик. Сегодня мы рассмотрим, какими способами можно собрать диодный мост из диодов Шоттки.

Диодный мост из четырех диодов Шоттки

Самый простой способ собрать мост на диодах Шоттки – соединить аноды диодной сборки и получить со сдвоенного диода обычный. Такой вариант позволит использовать по полной оба диода каждой диодной сборки.

Мощные диоды шоттки с малым падением напряжения

Диодный мост из трех диодов Шоттки

Подбирая диоды Шоттки для моста, нужно учитывать, что производители указывают максимальный ток диодной сборки, а не каждого диода, который в нее входит. Например, диодная сборка MBR20100CT рассчитана на ток 20А, то каждый из двух диодов рассчитан на 10А. Если параметры используемых диодных сборок позволяют, можно немного сэкономить и построить диодный мост всего из трех диодов Шоттки.

Мощные диоды шоттки с малым падением напряжения

Диодный мост из двух диодов Шоттки

Построить диодный мост из двух диодов Шоттки с общим катодомНЕВОЗМОЖНО. Необходимо иметь в наличии диод с общим катодом и с общим анодом. Купить диоды Шоттки с общим анодом крайне тяжело, они очень редко встречаются в продаже. Если все же получилось их приобрести, схема моста будет выглядеть вот так.

Диоды на основе перехода «металл-полупроводник», описанные теоретически Вальтером Шоттки в 1930-е годы, сегодня применяют там, где необходимы их эффективные электрические параметры, такие как малое падение напряжения на переходе (VF) и быстрое переключение (tRR).

Но за эти преимущества приходится платить. Основной недостаток диодов Шоттки связан с относительно высоким током утечки. Ток утечки, обозначаемый в иностранных источниках как ‘IR’ (ток в обратном направлении), обычно измеряется в микроамперах (10 -6 А) для небольших диодов Шоттки и может достигать нескольких миллиампер (10 -3 А) для более мощных диодов. По сравнению с диодами Шоттки у обладающих малой утечкой диодов с p-n переходом («полупроводник – полупроводник») этот параметр находится в диапазоне наноампер (10 -9 А), а более мощные диоды имеют ток утечки в несколько микроампер.

В устройствах с батарейным питанием, таких как смартфоны, планшеты и смарт-часы, этот недостаток диодов Шоттки сокращает срок работы от аккумуляторной батареи. Для решения проблемы использовались транзисторы на основе эффекта Шоттки – с таким же низким прямым напряжением на переходе, но с меньшим током утечки. В отдельных случаях такой подход был успешным, но приходилось жертвовать другим важным параметром диодов Шоттки – быстрым временем переключения. Возникали дополнительные сложности и в процессе изготовления приборов, так как нужно было использовать более сложные технологии КМОП.

Читайте так же:
Кабель ввгнг расшифровка обозначения

Можно ли сказать, что настало время попрощаться с диодом Шоттки?

Скорее всего, нет! ON Semiconductor продолжает финансировать исследования диодов Шоттки и уже имеет пригодные для массового производства полупроводниковые приборы малой мощности с использованием технологии Trench, которые найдут применение в ограниченных по энергоресурсам устройствах. С учётом того, что диоды типа Schottky Trench уже широко используются в энергоемких устройствах промышленного назначения, ON Semiconductor расширяет возможности этой технологии и для области малых энергий, выпуская усовершенствованные диоды Шоттки для светодиодного освещения, систем батарейного электропитания и беспроводной зарядки.

Новое семейство диодов небольшой мощности с использованием технологии Trench обладает небольшими VF и tRR (как у диодов Шоттки) и обеспечивает низкий ток утечки, который сопоставим с током утечки обычных диодов, близких по быстродействию к диодам Шоттки. Отличительный признак диодов малой мощности Schottky Trench – сочетание низких VF и IR, необходимое для оптимизации рассеиваемой мощности в энергочувствительных приборах. Эта технология позволяет инженерам использовать ее преимущества в ограниченных по энергоресурсам приложениях; например,в беспроводных зарядных устройствах.

Мощные диоды шоттки с малым падением напряжения

Рис. 1. Мост на диодах Шоттки в беспроводном зарядном устройстве

Так как энергия, переданная беспроводным способом в приемный блок питания (RPU), относительно невелика, все дальнейшие потери в цепях преобразования энергии должны быть сведены к минимуму для того, чтобы максимально ускорить процесс зарядки. Важным элементом в этой цепочке является мостовой выпрямитель, который преобразует сигнал переменного тока в электрический сигнал постоянного тока (DC). Затем он обрабатывается с помощью преобразователя постоянного тока (DC/DC), чтобы привести напряжение к уровню, необходимому для зарядки аккумулятора беспроводного устройства. Таким образом, мостовой выпрямитель должен иметь минимальное влияние на потерю мощности: потери прямого напряжения и тока должны быть сведены к минимуму, так как они снижают ценную мощность, передаваемую блоком Power Transmitting Unit (PTU).

Мощные диоды шоттки с малым падением напряжения

Рис. 2. Влияние VF и IR на общую эффективность полного моста

В качестве примера рассмотрим положительную полуволну на катушке приемной антенны. Падение напряжения на диоде D1 уменьшит амплитуду напряжения волны (Vwave); в результате, мы имеем эффективное напряжение (Vres= Vwave-VF), которое затем подается на преобразователь постоянного тока DC/DC. Однако, принятая полуволна тока (Iwave) будет урезанной, в основном, из-за тока утечки диода D4 (IR4) и частично за счет тока утечки диода D2.

Следовательно, полезный результирующий ток приемной цепи Ires=Iwave – (IR2+IR4). Выполненные с использованием технологии Trench, новые диоды Шоттки оптимизированы для этого случая таким образом, что прямое падение напряжения (VF) и потери за счет обратного тока (IR) обеспечивают минимальные потери по мощности.

Почему это имеет существенное значение?

Представим себе диод Шоттки с отличным VF = 0,2 В, но с IR = 3 мА. В выпрямительном мосте оптимальное прямое падение напряжения мало что изменит, если выпрямленный импульс будет буквально съеден токами утечки в обратном направлении (IR) у других диодов. И, наоборот, при очень небольшом токе утечки в 1 нА (как у диодов с p-n переходом) прямое падение напряжения может достигать 0,8 В. Слишком большие потери напряжения во входных цепях затрудняют его дальнейшее повышение с помощью преобразователя DC/DC. Поэтому необходимо соблюдать баланс между IR и VF так, чтобы минимизировать потери мощности и приблизить напряжение сигнала как можно ближе к значению на приемной катушке. Компания ON Semiconductor направила инвестиции в НИОКР с целью оптимизации потерь электроэнергии в новом семействе диодов Шоттки малой мощности, выполненных с использованием технологии Trench.

Описанные преимущества не связаны с более сложным процессом обработки, который, в свою очередь, может снизить надежность приборов. Вместо этого команда исследователей ON Semiconductor сосредоточилась на упрощении производственного процесса при сохранении высоких требований к качеству и надежности, что позволит использовать продукцию, например, в автоиндустрии. Первая серия новых диодов Schottky Trench малой мощности уже выпускается (NSR05T).

В разработке находится следующее усовершенствованное поколение диодов Schottky Trench с крайне низкой потерей мощности за счет оптимизации значений VF и IR.

Что такое диодный мост — простое объяснение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Диодный мост в корпусе и из отдельных элементов

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

  • однофазные;
  • трёхфазные.

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

УГО на чертеже

Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Схема

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

    На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или

Синусоидальное напряжение

Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

Напряжение на входе и выходе

Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

Сглаживающий фильтр из конденсатора

Основные характеристики

Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

  • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
  • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
  • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
  • Ifsm – пиковый выпрямленный ток.
  • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.
Читайте так же:
Диодный мост на зарядное устройство 12 вольт

При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

  • максимальный выпрямленный ток – 3А;
  • пиковый ток (кратковременно) – 50А;
  • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).

KBPC106

Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

Схемы выпрямителей

Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

Чтобы не было путаницы, давайте разбираться в терминологии.

Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

Схема Гретца

Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

Схема Ларионова

Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

Напряжение на входе и выходе однополупериодного выпрямителя

Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

Выпрямитель со средней точкой

Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

Сборка Шоттки с общим катодом

Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

Мост из 3 сборок Шоттки с общим катодом

Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

Мост из 4 сборок Шоттки с общим катодом

Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

Выпрямитель из 2 сборок Шоттки с общим катодом

Как спаять и подключить

Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

Как спаять выпрямитель

Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

Соединение из современных диодов

Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

Область применения и назначение

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

Схема подключения в трансформаторном БП

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

Выпрямители импульсного блока питания

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

Мост в генераторе автомобиля

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

Схема генератора автомобиля

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

Способы проверки

Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

Проверка диодов и звуковая прозвонка

Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

Определение цоколевки

Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

Проверка на плате не выпаивая

На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

Проверка омметром

Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector