Схемы простых мощных зарядных устройств для аккумуляторов
Схемы простых мощных зарядных устройств для аккумуляторов.
Что нужно для того, чтоб АКБ зарядился? Источник стабильного тока, который бы не превышал некоторое безопастное значение. В простейшем случае им будет обычный сетевой трансформатор. Он должен выдавать на вторичке такой ток, который нужен для стандартного зарядного режима (1/10 ёмкости аккумулятора). И если в начале зарядного цикла нагрузка начнёт тянуть ток бОльшего значения — произойдёт просадка напряжения на выходной обмотке трансформатора, а значит ток снизится. Есть два варианта выпрямителей:
Если нет зарядного, а зарядить надо АКБ, простые способы
Довольно популярная ситуация среди автомобилистов – это полная разрядка аккумулятора, особенно в зимнее время года и как обычно зарядного устройства под рукой не находится. Что же делать, если попали в такое положение? В этой статье вы получите самые популярные способы зарядки аккумуляторов без особых затрат.
Диод и обычная лампа в помощь. Один из самых простых способов подзарядить аккумулятор, а главное очень дешевый, ведь для работы вам понадобится лишь два элемента – простая лампа накаливания и диод.
Диод – срезает одну полуволну, благодаря чему работает как выпрямитель, но единственный минус – это и есть вторая полуволна, то есть ток все равно будет пульсировать, но аккумулятор сможет зарядиться. Правильным будет вопрос, а какой уровень тока вы получите на выходе, ведь от тока зарядки зависит, как долго прослужит вам аккумулятор. Все просто, ток зависит от лампочки, которую можно взять в пределах 40-100 ватт и все будет в порядке.
Лампа играет роль гасителя избыточного тока и напряжения, диод – выпрямитель, а так как он подключается в промышленную сеть, то должен быть довольно мощным, иначе произойдет пробой. Ток 10 Ампер, а вот номинальное напряжение диода должно быть 400 Вольт.
При работе диод выделяет большое количество тепла, а значит, его нужно охлаждать, самый простой вариант установить на алюминиевую пластину или радиатор со старой электроники.
На рисунке самый простой вариант с одним диодом, но в таком случае сила тока упадет минимум вдвое, а значит, заряд аккумулятора будет проходить в более щадящем режиме, но и дольше. Если использовать в качестве гасящее лампы 150 Ватную, то полный заряд произойдет за 6-12 часов. Если времени совсем мало, то силу току можно довольно просто увеличить, для этого лампочку меняют на более мощное оборудование, например обогреватели или даже электрические плиты.
Кипятильник для зарядки.
Данный вариант работает аналогичным принципом, но появился дополнительный плюс, на выходе после выпрямления будет чистый постоянный ток без каких либо пульсаций благодаря диодному мосту, который сглаживает обе полуволны.
В качестве гасящей нагрузки выступает обычный кипятильник, но его можно заменить на другие варианты, даже на ту же лампу с первого варианта. Диодный мост можно купить готовый или вытянуть со старых электроприборов, но его напряжение должно мыть не менее 400 Вольт, а сила тока не меньше 5 Ампер.
Диодный мост также устанавливается на теплоотвод для лучшего охлаждения, ведь он будет очень сильно разогреваться. Если готового варианта нет, то мост можно собрать из 4 диодов, но при этом их напряжение и ток должны быть равными и не меньше чем в самом мосту.
Но для надежности можно ставить и намного мощнее элементы. Шоттки – это готовые сборки из диодов, но их обратное напряжение совсем небольшое, около 60 Вольт, а значит, они моментально сгорят.
Третий, но не менее популярный вариант – конденсаторный. Главный плюс такого варианта – это конденсатор, который будет гасить пульсации. Данное зарядное устройств является более безопасным по сравнению с прошлыми вариантами. Ток заряда устанавливается с помощью емкости конденсатора исходя из формулы:
I=2*pi*f*C*U
U – напряжение сети, на входе выпрямителя примерно 210-236 Вольт.f – частота сети, но она выступает константой и равна 50 Гц. C – Емкостный объем самого конденсатора. pi – число Пи, равное 3,14.
Что бы зарядить автомобильный аккумулятор в течении часа придется собирать большие емкостные модули, но этот вариант сложный и очень плохой для аккумулятора, поэтому будет достаточно использовать конденсаторы около 20 мкФ. Конденсатор должен быть пленочного типа и рабочее напряжение должно составлять 250 и более Вольт.
Оставить комментарий Отменить ответ
Корпус для зарядного устройства
Корпус был собран из цинковой жести, так как хотел сделать как можно проще.
Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела.
Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом — КРВС-3510, благо они не много стоят:
В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов.
Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент.
Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ.
Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик!.)
Форум по простым ЗУ
Обсудить статью АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ
Схема простого для автомобильного аккумулятора
Формула нормального заряда
простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).
Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов
: блок питания, регулятор, индикатор.
Классика — резисторный зарядник
Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется. Ток заряда регулируется реостатом.
Важно! Никакие переменные резисторы, даже на керамическом сердечнике, не выдержат такой нагрузки.
Проволочный реостат
необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.
Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.
Зарядное устройство своими руками, подробности, схемы — видео
Гасящий конденсатор
Принцип работы изображен на схеме.
Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.
Если добавить еще один элемент – автоматический контроль заряда
, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.
Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.
Изюминка зарядного устройства
– конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.
Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.
В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.
Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.
Схема надежная
, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.
То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.
Недостатки ЗУ на тиристорах
У простой схемы есть существенный минус – отсутствие электронной защиты от переполюсовки, КЗ и перегрузок. Отчасти эту функцию выполняет плавкий предохранитель, что не очень удобно. При желании и достаточном опыте можно собрать дополнительную схему защиты и подключить её отдельно.
Второй недостаток – гальваническая связь настроечного блока с сетью. Его можно устранить, если использовать регулировочное сопротивление с пластиковой осью.
И ещё один минус – необходимость установки охлаждающих радиаторов (лучше использовать ребристые алюминиевые изделия). Частично проблема решается использованием схемы с включением регулирующего модуля в обмотку I питающего трансформатора.
Подводя итог, скажем, что тиристорное зарядное устройство своими руками собрать не так сложно, как может показаться с первого взгляда. Упорство и затраченное время будут вознаграждены недорогим качественным ЗУ с плавной регулировкой силы тока, продлевающей жизнь аккумулятору.
Зарядное устройство для автомобильного аккумулятора своими руками
Чтобы вам было легче представить, как сделать зарядное устройство для автомобильного аккумулятора своими руками, предлагаем примерную схему. Это лишь один из множества вариантов, который мы взяли за основу для данной статьи. Есть более простые устройства, но зачастую они не способны выдавать стабильный ток. А сложные в сборке схемы могут лишь запутать тех, кто впервые столкнулся с подобной задачей. Способ, который мы опишем в этой статье, будет интересен как увлеченным радиотехникам, так и тем, кто имеет небольшой опыт в сборке электротехнических приборов. Причем создание такого зарядного устройства для автомобильного аккумулятора своими руками не потребует больших вложений. Необходимые детали для него вы можете найти дома, на балконе, в гараже или у знакомых.
На рисунке ниже представлена схема, по которой будет собрано устройство. Основными элементами являются: 1 – понижающий трансформатор, 2 – диодный мост, 3 – вентилятор для охлаждения трансформатора и диодного моста, 4 – вольтметр, 5 – электролитический конденсатор, 6 – предохранитель.
Рис. Примерная схема зарядного устройства
3. Описание сборки
Подготовка трансформатора
За основу берем высоковольтный трансформатор и превращаем его в понижающий. Ведь зарядное устройство должно выдавать ток с меньшим значением, чем в электросети. Необязательно покупать трансформатор в магазине. Можно извлечь его из старого лампового телевизора, если таковой имеется у вас в гараже либо на даче. Вполне подойдет трансформатор от микроволновой печи. Обычно его мощность не превышает 1 кВт. Проверьте его работоспособность прежде, чем встраивать в схему. Подсоедините его к электросети на 220 В – при подаче тока на клеммы должен послышаться небольшой гул. Это свидетельствует о том, что прибор исправен и может быть использован в составе рабочей электрической схемы.
Первым делом необходимо удалить высоковольтную верхнюю обмотку. Ножовкой по металлу спилите ее. При этом действуйте аккуратно, чтобы не задеть первичную обмотку, которая должна остаться нетронутой. Остатки верхней обмотки нужно извлечь из корпуса. Сначала их можно высверлить дрелью, а затем выбить с помощью тупого предмета, например, долота с молотком. В итоге должно получиться два пустых отверстия – окошечка.
Намотка провода
Полученные окошки в корпусе трансформатора станут основой для намотки провода. Сечение провода выбирайте в зависимости от того, насколько емкие аккумуляторы предстоит заряжать. Чем больше емкость и вольтаж, тем толще должен быть провод.
Подсказка: количество витков провода рассчитывается по сечению провода. Например, для проводов в 1,5 – 3 мм с частотой 50 Гц на напряжение в 1 В необходимо 5 витков. Чтобы собрать зарядное устройство на 18 В, придется сделать 90 витков.
Намотку провода осуществляют следующим образом. В окошко с левой стороны вставляется провод с запасом примерно в 10 см в лицевой части трансформатора. Оставшийся длинный конец продевается во второе окошко сзади корпуса и выполняется намотка по часовой стрелке. Делать это нужно аккуратно, виток к витку.
Установка элементов охлаждения
В качестве корпуса для зарядного устройства будет использоваться корпус блока питания компьютера. Установленный на нем вентилятор нужно снять, открутив крепления отверткой, и перевернуть задом наперед. Воздух должен задуваться внутрь для охлаждения трансформатора и диодного моста.
Отдельно стоит сказать про диодный мост. Сила тока его может составлять от 10 до 50 А. Для аккумуляторов небольшой емкости можно использовать элемент на 10 А. В этом случае ему не требуется дополнительного охлаждения – его можно установить непосредственно на стенку корпуса блока с внутренней стороны. Другое дело, если вы используете диодный мост с большим значением. Тогда, чтобы он не сгорел от перегрева в процессе работы зарядного устройства, нужно установить его на радиатор. Подойдет радиатор от компьютера, который охлаждает микропроцессор. Из-за значительных габаритов эта деталь вместе с диодным мостом не уместятся внутри корпуса, поэтому нужно закрепить их снаружи. Крепление диодного моста к радиатору осуществляется с использованием термопасты.
Сборка всех деталей в корпусе
Все элементы соединяются согласно схеме зарядного устройства. В разрез одного из проводов от трансформатора устанавливается предохранитель на 15 А. Можно взять автомобильный предохранитель. Он защищает от короткого замыкания, так как на этом участке напряжение высокое. Затем в схему включаются диодный мост, вентилятор охлаждения, вольтметр, конденсатор. Можно использовать конденсатор на 16 или 25 В с емкостью от 3000 до 10 000 мкФ. Чем больше емкость, тем ровнее будет ток на выходе собранного устройства. Для подключения к клеммам аккумулятора необходимо присоединить провода с зажимами типа крокодил.
Когда все элементы схемы соединены между собой, их фиксируют на корпусе. Особое внимание уделите установке трансформатора. Вырежьте под его размер две картонки. Одну положите на дно корпуса, под трансформатор, вторую разместите сверху. Это поможет снизить вибрации и гудение во время работы. Крышку блока можно посадить на клей, чтобы она тоже не дребезжала.
Тестирование
Чтобы проверить собранное зарядное устройство для автомобильного аккумулятора своими руками, не спешите сразу подключать его к батарее. Попробуйте на галогенной лампочке. Подведите к ней крокодилы и подайте ток – она должна гореть без затухания и сильного мерцания. Так вы убедитесь в качестве подаваемого тока и можете попробовать зарядить аккумулятор. Окончание заряда можно контролировать по показаниям вольтметра.
Стоит сказать, что самодельное зарядное устройство вполне способно восполнить заряд севшего аккумулятора и годится для частных нужд. Чтобы прибор удовлетворял требованиям безопасности и эффективности, надо быть точно уверенным в своих действиях и в правильности подобранных деталей. Если вы не хотите рисковать, то сборку можете провести в качестве эксперимента, а зарядное устройство лучше купить в магазине.
Пуско-зарядное устройство 12 В для автомобиля своими руками
Завести машину при низкой температуре порой бывает достаточно проблематично, особенно если ваша батарея не первой молодости. Что делать, если выезжать надо немедленно и ждать, пока АКБ подзарядится от ЗУ, просто нет времени? Подобную неприятность можно избежать, если у вас имеется пуско-зарядное устройство. Оно продаётся в автомагазинах, однако стоимость изделия кусается. Поэтому многие автовладельцы, хоть немного знакомые с паяльником и знающие азы радиотехники, предпочитают собрать пуско-зарядное устройство своими руками.
Какими параметрами должно обладать пуско-зарядное устройство?
Чтобы силовой агрегат гарантированно завёлся, требуется рассчитывать параметры используемых компонентов конструкции. На выходе ПЗУ должно обеспечивать ток не менее 100 А, то есть мощность P = 1200 Вт. Но обязательно должен быть запас. Поэтому выдаваемое U = 14–16 В. Стоит отметить, что это минимальные параметры, с которыми возможен пуск мотора при условии, что АКБ хоть чуть-чуть, но ещё жива. Дело в том, что стартеру единовременно требуется энергия до 200 А, и некоторую её часть выдаёт батарея. Когда коленвал начинает проворачиваться, количество потребляемого тока падает примерно вдвое.
Выбор простой схемы на основе трансформатора
ПЗУ какого угодно типа выполняют одну и ту же задачу – помогают завести машину. Однако, собирая пуско-зарядное устройство для автомобиля своими руками или покупая его, стоит помнить, что по внутренней электронной начинке существует несколько разновидностей:
- работающие на трансформаторе;
- отдающие энергию от специального отдельного аккумулятора (бустеры);
- конденсаторного типа;
- импульсные.
Так как речь идёт о наиболее простых ПЗУ, которые можно собрать своими руками, то далее будут рассматриваться схемы первого типа из указанных выше.
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
Недостатки и преимущества простых самодельных пуско-зарядных устройств
Главные достоинства трансформаторного ПЗУ:
- простота сборки и высокая надёжность;
- мощность;
- возможность использования деталей б/у, что серьёзно удешевляет конструкцию;
- пуск двигателя с почти «мёртвым» аккумулятором;
- небольшая цена: даже если все элементы приобретать в магазине, стоимость самодельного ПЗУ будет в разы меньше заводского.
А что же с минусами? В первую очередь можно назвать большую массу. Впрочем, это некритично: вряд ли кто-то будет возить с собой данное устройство – его место в гараже, на «стационаре».
Есть и другая отрицательная сторона: в наиболее простых схемах пуско-зарядных устройств для автомобильных аккумуляторов отсутствует какая-либо защита от короткого замыкания, перегрузок, переполюсовок, что чревато выходом из строя как самого ПЗУ, так и электроники автомобиля. Отсутствие контрольных приборов – амперметра, вольтметра тоже плохо сказывается на эксплуатации простейших ПЗУ.
Ещё один минус: более сложные схемы зарядно-пусковых устройств для автомобильных аккумуляторов по плечу человеку, знакомому с азами радиотехники. Также устройство не будет полноценно функционировать, если в сети значительно меньше 220 В, а это в сельской местности совсем не редкость. Решить проблему можно, используя стабилизатор.
ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ
Зарядное устройство такая вещь, которая необходима каждому владельцу автомобиля. Можно купить готовое ЗУ в магазине, можно собрать его самому по многим известным схемам, а можно использовать промежуточный вариант — приобрести конструктор для самостоятельной сборки. В этом случае вам понадобится только силовой трансформатор и корпус. Недавно заказал такое ЗУ и теперь поделюсь информацией о нём с вами, уважаемые посетители сайта "Радиосхемы".
Технические характеристики ЗУ:
Амперметр . до 9,9 Ампер
Заданное напряжение на аккумуляторе, при котором будет отключен заряд ……………………. …. от 5,1 до 30,0 Вольт
Защита от короткого замыкания
Защита от переполюсовки при подключении аккумулятора
Комплект поставки:
Назначение прибора
Зарядное устройство SPARK-3 предназначено для заряда аккумуляторов с напряжением 6, 12, 24 вольт током от 0,5 до 9,9 ампер до заданного напряжения или заданное время. В состав прибора входят: Вольтметр, Амперметр, стабилизатор тока, автомат отключения при достижении на аккумуляторе заданного напряжения, таймер. В комплект входит собранная и отлаженная плата, диодный мост, симистор, два диода и рамка для монтажа индикатора в корпус. Управление производится с помощью трех кнопок:
верхняя кнопка — "Верх”
средняя кнопка — "Меню”
нижняя кнопка — "Вниз”
Для включения режим зарядки нажать "Верх” при этом засветится светодиод "зарядка” инициируя включенный режим зарядки. Последующие нажатия на кнопку "Верх” будут переключать индикацию напряжения или тока. Если включен амперметр, на индикаторе показана буква "А” (например "0,0А”). Для отключения режима заряда нажать кнопку "Вниз”, светодиод " зарядка” гаснет, последующие нажатия этой кнопки так же поочередно показывают на индикаторе напряжение или ток. Для изменения параметров заряда служит кнопка "Меню”.
При первом нажатии и удержании будет показан символ вольтметра "— U” после отпускания показано напряжение от 5,1 до 30,0 вольт. Последняя цифра мигает. С помощью кнопок "Верх” и "Вниз” установить требуемое напряжение, при достижении которого будет отключен режим заряда.
При втором нажатии и удержании будет показан символ ампер " — A” после отпускания показано задание тока заряда от 0,5А до 9,9А в амперах с помощью кнопок "Верх” и "Вниз” установить требуемый ток заряда.
При третьем нажатии и удержании будет показан символ часов " — h” при отпускании показано задание таймера отключения от 1h до 30h (от 1 до 30 часов) с помощью кнопок "Верх” и "Вниз” установить требуемое значение таймера отключения.
При четвертом нажатии на индикаторе будут три черточки "— — —”. при отпускании прибор выйдет из режима Меню, на индикаторе не будет мигать последняя цифра.
Как заряжать аккумулятор
Подсоедините крокодилы, на клеммы аккумулятора нажимая кнопку "Вниз” переключите прибор в индикацию напряжения. Вольтметр покажет напряжение на аккумуляторе. Нажмите кнопку "Верх”. Включится светодиод " зарядка”. Ток будет плавно подниматься до заданного значения. Каждые две минуты ток выключается на 4 секунды и при отключенном токе напряжение сравнивается с заданным максимальным напряжением, если напряжение на аккумуляторе достигнет заданного значения, то зарядка отключится и светодиод " зарядка” погаснет. Если напряжение на аккумуляторе не достигнет максимального значения, то отключение произойдет по истечении задания таймера (от 1 до 30 часов).
— Для ручного отключения зарядки нажать кнопку "Вниз”
—
Аккумулятор с напряжение меньше 5 вольт заряжаться не будет.
—
При переполюсовке клемм ток зарядки так же не будет включен.
—
При выключенном заряде или отсутствии сети 220 вольт прибор не разряжает аккумулятор.
Сборка зарядного устройства
Собираем зарядное устройство с МК согласно принципиальной схемы — клик для увеличения картинки:
Для сборки зарядного устройства SPARK-3 потребуется трансформатор мощностью от 100Вт до 250Вт с напряжением на вторичной обмотке 18 — 22 Вольт, корпус и радиатор (пластина размером 100*150*3 мм). Если необходимо собрать зарядное устройство для аккумуляторов 24 вольта, то трансформатор должен иметь напряжение на вторичной обмотке 30 вольт.
Выпрямитель и симистор закрепить на радиаторе. Радиатор закрепить в корпусе через изоляторы. Кнопки на плате служат только для проверки устройства при установке в корпус рекомендуеся припаять другие кнопки установленные на передней панели.
При первом включении не подключая аккумулятор, нажимая кнопку "Вниз” переключить в Вольтметр. Вольтметр должен показывать "00,0" если вольтметр показывает напряжение, значит, пробит симистор, подключать аккумулятор недопустимо. Для замены подойдет любой импортный симистор на ток 12-20 ампер. Не подключать отечественные симисторы — для них требуется большой ток включения. Цена данного набора может колебаться в пределах 12-20уе — уточняйте в интернет магазинах. В дальнейшем устройство будет собрано, подключено к электронному трансформатору и размещено в корпусе. Следите за публикациями!
Форум по обсуждению материала ЗАРЯДНОЕ УСТРОЙСТВО С МИКРОКОНТРОЛЛЕРОМ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ
Классический фонарик со встроенным зарядным устройством можно неплохо улучшить, добавив пару микросхем и 18650 АКБ.
Электрофорез "Поток-1" — схема, инструкция и самостоятельное изготовление медицинского прибора.
Как работает литий-ионный аккумулятор и чем он отличается по физико-химическим свойствам от других типов. Занимательная теория.
Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.
Обзор схем зарядных устройств автомобильных аккумуляторов
Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле
I=0,1Q
где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.
Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.
Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.
В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.
В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.
Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (
Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.
Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.
Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.
Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.
На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.
Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.
Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:
В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.
Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).
Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.
Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.
В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:
Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.
В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.