Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Низколегированные стали

Низколегированные стали

Для улучшения технических свойств металлов, сплавов применяют технику легирования. Она заключается в расширении состава исходного материала дополнительными добавками. Новые элементы позволяют придать стали недостающих свойств. В зависимости от количества добавок (в процентном соотношении) бывает высоко-, средне- и низколегированная сталь.

Состав

В низколегированной стали содержится от 0,2% углерода и легирующих элементов не более 5% (в некоторых научных источниках допускается применение добавок не более 2,5%). Чаще всего легирование осуществляют путем внесения:

  • ванадия — для обеспечения равномерной структуры;
  • молибдена — делает металл устойчивым к воздействию высоких температур;
  • ниобия — отвечает за повышение прочности;
  • вольфрама, азота — обеспечивает повышение теплостойкости;
  • титана — для повышения износоустойчивости;
  • никеля, кремния — придает стали удароустойчивости, сопротивляемости току;
  • марганца — делает металл тверже, не нарушая его пластичность;
  • кобальта — для повышения пластичности, прочности, магнитных характеристик.

XXL.jpeg

Низколегированные стали: свойства и особенности

Категория низколегированных сталей представлена черными металлами. В зависимости от используемых легирующих элементов и их количества, такой материал может обладать:

  • повышенным сопротивлением механическому старению;
  • достаточно высоким пределом текучести;
  • низким порогом хладноломкости;
  • хорошей пластичностью.

В сравнении с высокоуглеродистыми металлами, марки низколегированных сталей содержат минимум неметаллических соединений. Они также обладают антикоррозийной устойчивостью и способностью противостоять истиранию. Такой материал поддается легкой обработке, сохраняет свои рабочие характеристики при минусовых температурах. Благодаря закалке, низколегированные стали становятся слабо чувствительными к надрезу.

4-768x576.jpg

О классификации низколегированных сталей

Данный металл разделяют по химическому составу:

  • марганцевые;
  • марганцевокремнистые;
  • кремнемарганцевые;
  • кремнемарагнцевомедистые;
  • хромокремненикелемедистые;
  • марганцеванадиевые.

По качеству выделяют низколегированные стали:

  • обыкновенные;
  • качественные;
  • высококачественные.

Также их могут различать по способу термической обработки и свариваемости.

krug-st3-x-210.jpg

Особенности маркировки

Низколегированную сталь, марки которой определяются ГОСТом 4543-71, маркируют с указанием:

  • свойства металла, его отношения к определенной группе — обозначается буквой на первом месте;
  • процентного содержания углерода — указывается цифрой, после первой буквы;
  • использующихся легирующих добавок и их количества в процентном соотношении.

Сферы применения низколегированной стали

Такой материал разных марок может применяться при обустройстве трубопроводных систем или изготовлении сварных конструкций в различных промышленных сферах. Без низколегированных сталей не сможет полноценно осуществляться нефтяное аппаратостроение, производство паровых турбин. Используют металл определенных марок при строительстве инженерных сооружений, которые эксплуатируют в условиях переменных динамических нагрузок.

Для чего легируют стали ответ

В лучших низко- и среднеуглеродистых сталях после типичной для них термической обработки прочность, оцениваемая временным сопротивлением, ограничивается значениями ниже При эти стали имеют высокую чувствительность к концентраторам напряжений и эксплуатационно ненадежны.

Развитие техники, стремление к созданию машин наименьшей массы требуют применения высокопрочных сталей, имеющих Для предупреждения хрупкого разрушения таким сталям необходим определенный запас вязкости (минимально допустимая величина Кроме того, расчет рабочих напряжений в деталях из этих сталей необходимо вести не только по значению но и по предельно допустимому размеру дефекта с использованием критерия При использовании высокопрочных сталей важно также соблюдение определенных требований к конструированию деталей и технологии обработки их поверхности. При проектировании необходимо избегать конструктивных концентраторов напряжений, а при изготовлении не допускать на поверхности глубоких рисок, царапин, обеспечивать минимальную ее шероховатость.

Высокопрочное состояние в сочетании с достаточно высоким сопротивлением хрупкому разрушению может быть получено при использовании: 1) среднеуглеродистых комплексно-легированных сталей после низкого отпуска или термомеханической обработки; 2) мартенситно-стареющих сталей; 3) метастабильных аустенитных сталей.

Среднеуглеродистые комплекснолегированные низкоотпущенные стали.

ТАБЛИЦА 8.7. Механические свойства высокопрочных сталей

После закалки и низкого отпуска уровень прочности стали определяется содержанием углерода и практически не зависит от присутствия легирующих элементов. Увеличение содержания углерода до 0,4% повышает временное сопротивление до (см. рис. 8.5), но углеродистая сталь имеет полностью хрупкое разрушение. Необходимый запас вязкости при такой или несколько меньшей прочности достигается совокупностью мероприятий (см. п. 7.3), главные из которых направлены на подбор рационального состава стали, получение мелкого зерна, обязательного для высокопрочного состояния, повышение металлургического качества металла.

Повышение вязкости достигается прежде всего легированием никелем Чем больше его количество, тем ниже порог хладноломкости и больше допустимый уровень прочности. Вместе с ним вводят небольшое количество кремния, молибдена, вольфрама, ванадия. Эти элементы, затрудняя разупрочнение мартенсита при отпуске, позволяют несколько повысить температуру отпуска и тем самым полнее снять закалочные напряжения. Карбидообразующие элементы необходимы также для получения мелкого зерна. Хром и марганец вводят для обеспечения нужной прокаливаемости.

К распространенным высокопрочным сталям относятся стали Характерные механические свойства двух сталей, определенные на образцах с трещиной и без нее, приведены в табл. 8.7. В самолетостроении широко применяют сталь которая представляет собой хромансиль, улучшенную введением Ее используют для силовых сварных конструкций, деталей фюзеляжа, шасси и т. п. При временном сопротивлении до сталь подвергают изотермической закалке, поскольку по сравнению с низкоотпущенным состоянием она обеспечивает меньшую чувствительность к надрезам и более высокое сопротивление разрушению.

Читайте так же:
Чем править алмазный круг

Среднеуглеродистые стали, упрочненные термомеханической обработкой. Термомеханическая обработка (ТМО) совмещает два механизма упрочнения — пластическую деформацию аустенита и закалку — в единый технологический процесс. Такое комбинированное воздействие применительно к среднеуглеродистым легированным сталям — и другим — обеспечивает высокую прочность (на образцах небольшого размера при достаточном запасе пластичности и вязкости.

В зависимости от условий деформации аустенита — выше или ниже температуры рекристаллизации — различают соответственно высокотемпературную (ВТМО) и низкотемпературную (НТМО) термомеханическую обработку.

При ВТМО (рис. 8.10, а) сталь деформируют при температуре выше температуры и немедленно закаливают с тем, чтобы не допустить развития рекристаллизации аустенита. При НТМО (рис. 8.10, б) деформация проводится в области повышенной устойчивости аустенита (400 — 600 °С). Рекристаллизация при этих температурах не происходит, однако необходимо избегать образования бейнитных структур.

Рис. 8.10. Схема термомеханической обработки стали: (заштрихованная зона — интервал температур рекристаллизации)

ТМО обоих видов заканчивается низким отпуском при 100-200 °С. При ТМО повышается весь комплекс механических свойств и особенно пластичность и вязкость, что наиболее важно для высокопрочного состояния. По сравнению с обычной обработкой прирост прочности при ТМО составляет 200 — 500 МПа, т. е. 10-20%. Характеристики пластичности и вязкости повышаются в раза.

Улучшение комплекса механических свойств обусловлено формированием специфического структурного состояния. Деформация создает в аустените высокую плотность дислокаций, образующих из-за процесса полигонизации устойчивую ячеистую субструктуру, которая наследуется мартенситом при закалке. При этом субграницы тормозят движение дислокаций и локализируют деформацию внутри зерна; в результате прочность повышается. В то же время субграницы ведут себя как полупроницаемые барьеры. Они допускают прорыв дислокаций, их передачу из мест скоплений в соседние субзерна. Это вызывает пластическую релаксацию локальных напряжений и служит причиной повышенных пластичности и вязкости.

Наибольшее упрочнение достигается при НТМО. Однако ее проведение технологически более сложно, чем ВТМО. Она требует мощных деформирующих средств, так как для получения высокой прочности необходимы большие степени обжатия (50-90%), а аустенит в области температур не столь пластичен. Ее можно применять для изделий небольшого сечения и простой формы (лист, лента, прутки). Кроме того, НТМО пригодна для легированных сталей с большой устойчивостью переохлажденного аустенита.

ВТМО обеспечивает меньшее упрочнение но более высокие пластичность и вязкость. Она уменьшает также чувствительность к трещине возрастает на снижает порог хладноломкости, повышает сопротивление усталости и затрудняет разупрочнение при отпуске, что связано с устойчивостью ячеистых дислокационных структур мартенсита. Особенно эффективна ВТМО для чистого вакуумированного металла. Кроме того, ВТМО более технологична, так как аустенит выше точки пластичен и стабилен. При деформации не требуются большие степени обжатия; предельное упрочнение достигается при деформации на 20 — 40%. Для ВТМО пригодны любые конструкционные стали.

Область ВТМО расширяет явление обратимости эффекта упрочнения. Оно состоит в том, что свойства, полученные при ВТМО, наследуются после повторной закалки. Это позволяет закладывать определенный ресурс свойств в стальные полуфабрикаты (поковки, прутки, листы и т. п.), подвергая их ВТМО на металлургическом заводе.

Улучшить свойства среднеуглеродистых легированных сталей можно

холодной пластической деформацией низкоотпущенного мартенсита. Небольшая деформация (5-20%) увеличивает временное сопротивление и особенно предел текучести (до 25%) сталей.

Наиболее высокая прочность получена сочетанием ВТМО и последующей холодной пластической деформации образцов из низкоотпущенных среднеуглеродистых сталей.

Мартенситно-стареющие стали. Это особый класс высокопрочных материалов, превосходящих по конструкционной прочности и технологичности рассмотренные выше среднеуглеродистые стали.

Их основа — безуглеродистые сплавы железа с содержанием легированные и другими элементами (табл. 8.8).

Высокая прочность этих сталей достигается совмещением двух механизмов упрочнения: мартенситного -превращения и старения мартенсита. Небольшой вклад вносит также легирование твердого раствора.

Никель стабилизирует у-твердый раствор, сильно снижая температуру -превращения (см. рис. 3.20), которое даже при невысоких скоростях охлаждения протекает по мартенситному механизму.

Мартенситно-стареющие стали закаливают от на воздухе. При нагреве легирующие элементы обладающие ограниченной и переменной растворимостью в переходят в у-раствор и при охлаждении не выделяются. Закалка фиксирует пересыщенный железоникелевый мартенсит. Благодаря высокому содержанию никеля, кобальта и малой концентрации углерода дислокации в нем обладают высокой подвижностью. Поэтому железоникелевый мартенсит при прочности имеет высокую пластичность вязкость и малую способность к упрочнению при холодной деформации. Последнее позволяет деформировать стали с большими степенями обжатия.

Основное упрочнение достигается при старении (480— 520 °С), когда из мартенсита выделяются мелкодисперсные частицы вторичных фаз и др.), когерентно связанные с матрицей. Наибольшее упрочнение при старении вызывают меньшее Для мартенситно-стареющих сталей характерен высокий предел текучести (см. табл. 8.8) и более высокий, чем у лучших пружинных сплавов, предел упругости низкий порог хладноломкости.

Читайте так же:
Как самому сделать блок питания для шуруповерта

При прочности и более стали разрушаются вязко, хотя сопротивление распространению трещины у них невелико Малая чувствительность к надрезам, высокое сопротивление хрупкому разрушению обеспечивают высокую конструкционную прочность изделий в

ТАБЛИЦА 8.8. Свойства мартенситно-стареющих сталей

широком диапазоне температур от криогенных до 450-500 °С.

Другое важное достоинство этого класса сталей — высокая технологичность.

Они обладают неограниченной прокаливаемостью, хорошо свариваются, до старения легко деформируются и обрабатываются резанием. При термической обработке практически не происходит коробления и исключено обезуглероживание.

Стали со стареющим мартенситом, несмотря на высокую стоимость, применяют для наиболее ответственных деталей в авиации, ракетной технике, судостроении и как пружинный материал в приборостроении.

Метастабильные аустенитные стали (трипстали) — новый класс высокопрочных материалов повышенной пластичности. Они относятся к высоколегированным сталям. Их состав, который ориентировочно может быть выражен марками подобран таким образом, чтобы после закалки от температуры 1000-1100 °С они имели устойчивую аустенитную структуру ( лежит ниже 0°С). Аустенитная структура обладает высокой вязкостью, но низким пределом текучести. Для упрочнения стали подвергают специальной тепловой обработке — пластической деформации с большими степенями обжатия (50-80%) при температуре лежащей ниже температуры рекристаллизации. При этом деформационное упрочнение (наклеп) совмещается с карбидным упрочнением, развивающимся в результате деформационного старения. Насыщенная дислокационная структура, создаваемая пластической деформацией, дополнительно стабилизируется выделяющимися дисперсными частицами карбидов. В результате деформационно-термического упрочнения предел текучести повышается до При этом сталям свойственны высокая пластичность и трещиностойкость.

Рис. 8.11. Вязкость разрушения высокопрочных сталей: 1 — метастабильных аустенитных; 2 — мартенситно-стареющих; 3 — хромоникелевых

Значения и у этих сталей больше, чем у других высокопрочных сталей (рис. 8.11).

Высокая пластичность и вязкость разрушения обусловлены развитием мартенситного превращения в процессе деформирования. Дело в том, что при тепловой обработке аустенит обедняется углеродом и легирующими элементами и становится менее устойчивым (ме-тастабильным). Благодаря этому повторная пластическая деформация вызывает превращение метастабильного аустенита в мартенсит деформации. Механизм повышения пластичности и вязкости разрушения связан с -локальным упрочнением аустенита в участках пластического течения (в том числе и у вершин движущейся трещины). Образующийся в таких участках мартенсит деформации упрочняет их настолько, что они перестают быть слабыми участками, и деформация распространяется на соседние участки.

Применение метастабильных аустенитных сталей ограничивается сложностью деформационно-термического упрочнения. Для высоких степеней деформации при низких температурах требуются мощные деформирующие средства. Области применения сталей:

Рис. 8.12. Соотношение между пределом текучести и пластичностью высокопрочных сталей: 1 — среднеуглеродистых, упрочненных ТМО; 2 — мартенситно-стареющих; 3 — среднеуглеродистых легированных без ТМО; 4 — метастабильных аустенитных

детали авиаконструкций, броневой лист, проволока тросов и др.

Взаимное расположение высокопрочных сталей различных классов по прочности и пластичности представлено на рис. 8.12. Из него видно, что наибольшей прочностью обладают среднеуглеродистые стали после термомеханической обработки, а наибольшей пластичностью при одинаковой прочности — метастабильные аустенитные стали.

Сталь нелегированная

Сплав нелегированной стали-химические термины, используемые для названия двух типов стали. Сталь представляет собой металлический сплав. Он состоит из железа и некоторых других элементов, таких как углерод. Нелегированные стали, не имеют элементов, добавляемых в сталь при ее переплавке. Сталь широко используется во всем мире из-за нескольких причин, таких как низкая стоимость, простота изготовления, прочность и т. д. Существуют различные сорта стали доступны в соответствии с их свойствами.

Легированная сталь

-это вид стали и имеет большое количество другие элементы, кроме железа и углерода. Основное различие между легированные и нелегированные стали, что в легированной стали, остальные элементы добавляются железа при выплавке принимая во внимание, что в нелегированной стали, без элементов добавляются при плавке.

Существует два основных типа сплавов в качестве замещения сплавах и сплавах внедрения. Когда расплавленный металл используется в производстве сплавов, размеры атомов будут определять, какой тип будет сформирована. Если атомы металлов, которые собираются, чтобы быть смешанным иметь относительно одинаковые размеры, образовавшихся замещающих Тип сплава, но если один тип атомов металла меньше, чем другой тип, промежуточный сплав образуется.

Нелегированная сталь

-это вид стали, который имеет другие элементы добавляются во время плавки. Плавка процесс извлечения металла из руды. Этот процесс включает в себя нагрев и плавление руды. При плавки удаляет примеси, присутствующие в железной руде. Процесс плавки проводится несколько раз для того, чтобы удалить нагар. Если слишком много присутствует углерода, это не нелегированные стали. Содержание углерода должно быть примерно до 1 %.

В производстве легированной стали, некоторые элементы, такие как хром, кобальт добавляются железа, но в производстве нелегированной стали, без добавления других элементов. Поскольку нет других элементов, кроме железа и небольшого количества углерода, нелегированной стали есть меньше прочность и меньшую гибкость. Таким образом, эта сталь должна пройти процесс называется темперированнее. Закаливание — это процесс нагревания железа при высокой температуре для того, чтобы сделать ее чувствительной к образованию трещин, которые происходят во время сварки.

Читайте так же:
Кварцевая лампа для сада

Нелегированная сталь используется в области строительства, где требуются от металлов высокой прочности. Нелегированной стали прутки используются для укрепления бетонов, для того чтобы сделать ворота, заборы и т. д.

Заключение сплав-это смесь или смеси из двух или более металлических компонентов. Это могут быть однородными или разнородными. Легированная сталь-это вид стали, который включает в себя железо, углерод и некоторые другие элементы, по своему химическому составу. Основное различие между легированной и нелегированной стали заключается в том, что легированная сталь состоит из железа и других элементов во время плавки, а нелегированной стали без дополнительных элементов.

15Л копровые бабы, блоки, ролики, корпусы, поводки, захваты, пильные рамы, детали сварно-литых конструкций с большим объемом сварки, плиты, подушки и другие неответственные детали, работающие под действием средних статических и динамических нагрузок.

35Л станины прокатных станов, зубчатые колеса, тяги, бегунки, задвижки, балансиры, диафрагмы, катки, валки, кронштейны и другие детали, работающие под действием средних статических и динамических нагрузок.

25Л станины прокатных станов, шкивы, траверсы, поршни, буксы, крышки цилиндров, плиты настильные, рамы рольгангов и тележек, мульды, корпусы подшипников, детали сварно-литых конструкций и другие детали, работающие при температуре от —40 до 450 °С под давлением.

20Л шаботы, арматура, фасонные отливки деталей общего машиностроения, изготовляемые методом выплавляемых моделей, детали сварно-литых конструкций и другие детали, работающие при температуре от —40 до 450 °С.

30Л рычаги, балансиры, корпусы редуктора, муфты, шкивы, кронштейны, детали сварно-литых конструкций, чаши и конусы засыпных аппаратов, станины, балки, опорные кольца, бандажи, маховики и другие детали, работающие под действием средних статических и динамических нагрузок.

40Л станины, корпусы, муфты, тормозные диски, шестерни, кожухи, вилки, звездочки и другие детали, работающие при температурах до 400 °С.

45Л станины, зубчатые колеса и венцы, тормозные диски, муфты, кожухи, опорные катки, звездочки и другие детали, к которым предъявляются требования повышенной прочности и высокого сопротивления износу и работающие под действием статических и динамических нагрузок.

50Л шестерни, бегунки, колеса, зубчатые колеса подъемно-транспортных машин, валки крупно-, средне- и мелкосортных станов для прокатки мягкого металла. Сталь применяется в нормализованном или улучшенном состоянии и после поверхностного упрочнения с нагревом ТВЧ.

55Л зубчатые колеса и муфты подъемно-транспортных машин, ходовые колеса, бегунки, зубчатые сектора и венцы, полумуфты, скаты, втулки зубчатых муфт и другие детали, к которым предъявляются требования повышенной твердости.

Для чего легируют стали?

Применяется легированиедля изменения или улучшения физических и химических свойств металлов, сплавов.

Как люди стали умными и воспитаными?

Как люди стали умными и воспитаными?

Кто стал маленьким вместо Нильса?

Кто стал маленьким вместо Нильса.

Как Ассирия стала могутнею военною державою?

Как Ассирия стала могутнею военною державою?

Как бог стал человека?

Как бог стал человека.

Как Пётр первый стал преобразователем России?

Как Пётр первый стал преобразователем России.

Что нужно положить в бочку, чтобы она стала легче?

Что нужно положить в бочку, чтобы она стала легче?

Когда произошла разделение церквей как они стали называться?

Когда произошла разделение церквей как они стали называться.

Когда произошло разделение церквей как они стали называться?

Когда произошло разделение церквей как они стали называться.

Как Русь стала православной ?

Как Русь стала православной ?

Для изготовления молотков, зубил, ножниц, напильников применяется : а?

Для изготовления молотков, зубил, ножниц, напильников применяется : а.

Б. Инструментальная углеродистая сталь.

В. Легированная сталь.

Вы зашли на страницу вопроса Для чего легируют стали?, который относится к категории Другие предметы. По уровню сложности вопрос соответствует учебной программе для учащихся студенческий. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

1. еки дос 2. Аюдан коркуы 3. Ауру бала 4. Агашка шыгып кетуи 5. Ауру баланин амалсыз жерге жатып калуы 6. Аюдын оган тиспеуи 7. Онын акылы 8. Досынын катты уялуы.

А. Зубр, лісовий кіт, золотомушка.

Цветение растений, половодье, тайние снега — только весной, вскармливание птиц еще летом, созревание тоже еще может летом, гнездования летом.

Образ Людмилы из поэмы "Руслан и Людмила" «Руслан и Людмила» – поэма А. С. Пушкина, написанная им в юности. Он обратился к русскому фольклору, где черпал идеи и вдохновение. Сказочно — фантастический сюжет произведения искусно совмещает волшебство..

Читайте так же:
Ключ для сцепления бензопилы

S = x * x P = x * 4 x * x = 12x x = 12x / x x = 12.

Свойства вод Мирового океана Вода — «универсальный растворитель» : в ней, хотя бы в малой степени, способен раствориться любой из элементов. Вода имеет наибольшую среди всех обычных жидкостей теплоемкость, то есть для ее нагревания на один градус тр..

В Е получится слово ВЕК.

В каждой семье наверняка есть своя семейная реликливия. Вот у нас есть точно. Это книга — библия. Очень старая. Передаётся из поколения в поколение.

Потому что он один из символов Лондона и Британии.

Р = (а + в) * 2 пусть х одна сторона, тогда другая сторона 2х (Х + 2х) * 2 = 36 2х + 4х = 36 6х = 36 х = 36 : 6 х = 6 одна сторона 6 * 2 = 12 другая сторона проверка Р = (6 + 12) * 2 = 36.

Сталь конструкционная низколегированная для сварных конструкций

К низколегированным относятся стали, в которых содержание легирующих компонентов в сумме составляет менее 2,5% (кроме углерода). При содержании легирующих элементов в сумме от 2,5 до 10% сталь называется среднелегированной, при содержании свыше 10% легирующих элементов— высоколегированной. В наименовании стали легирующие компоненты указываются в порядке убывания их содержания (например, хромомолибденовая, хромокремнемарганцовая, хромоникелевая и т. п.).

Влияние того или иного элемента на свойства стали зависит от содержания в ней как данного, так и других элементов и особенно углерода.

В обозначении марок легированных сталей по ГОСТ входят буквы и цифры. Буква показывает, какой легирующий элемент входит в сталь, а стоящие за ней цифры — среднее содержание элемента в процентах. Если данного элемента содержится в стали менее 1%, то цифры за буквой не ставятся. В обозначении марок конструкционных низколегированных сталей впереди всегда стоят две цифры, обозначающие содержание в стали углерода в сотых долях процента. Буква А означает, что сталь содержит пониженное количество серы и фосфора и является высококачественной. Буква Т в конце обозначения марки указывает, что сталь содержит титан, а буква Б — ниобий. Например, высоколегированная сталь 0Х18Н9Т содержит: углерода менее 0,1%, хрома в среднем 18%, никеля в среднем 9% и титана до 1%.

Низколегированная хромокремненикелемедистая сталь 15ХСНД по ГОСТ 5058—65 (прежние марки НЛ2 или СХЛ2) содержит 0,12—0,18% углерода; 0,4—0,7% марганца; 0,4—0,7% кремния; 0,2—0,4% меди; 0,6—0,9% хрома; 0,3—0,6% никеля; до 0,04% фосфора и не более 0,04% серы. Временное сопротивление этой стали 50 кгс/мм 2 , относительное удлинение 21%, ударная вязкость 6 кгс-м/см 2 . Сталь 10ХСНД (НЛ1 или СХЛЗ) отличается от стали 15ХСНД содержанием углерода, которого в ней до 0,12%. У этой стали временное сопротивление 54 кгс/мм 2 , относительное удлинение 19% и ударная вязкость 8 кгс-м/см 2 . Стали 10 ХСНД и 15ХСНД хорошо свариваются и в незначительной степени подвержены коррозии; их используют для сварных строительных конструкций высокой надежности, а также в судостроении.

Для сварных мостов, газопроводов и других ответственных сооружений применяют низколегированную конструкционную крем-немарганцевую сталь 10Г2С1 (МК) по ГОСТ 5058—65. Эта сталь содержит до 0,12% углерода; 1,3—1,65% марганца; 0,9— 1,2% кремния; не более 0,035% фосфора и 0,04 серы; по 0,30% хрома и никеля; 0,30% меди. Сталь 10Г2С1 имеет временное сопротивление 46—52 кгс/мм 2 , относительное удлинение — 21%, повышенную коррозионную стойкость, пониженную хладноломкость и удовлетворительно сваривается.

Молибденовые, хромомолибденовые и хромо-молибденованадиевые низколегированные теплоустойчивые стали применяют для изготовления паровых котлов, турбин и трубопроводов, подверженных в процессе работы действию высоких температур и давлений. Для температур 450— 500° С предназначаются молибденовые стали 15М и 25М-Л, содержащие 0,4—0,6% молибдена; для 540°С — хромомолибденовые 15ХМ, 20ХМ-Л, содержащие 0,4—0,6% молибдена и 0,8—1,1% хрома; для 585° С — хромомолибденованадиевые 12Х1МФ и 15Х1М1Ф. Для труб, предназначенных для поверхностного нагрева котлов, применяют хромомолибденованадиевую сталь 12Х2МФСР, дополнительно легированную кремнием и бором, а для крупных отливок паровых турбин — сталь 15Х2М2ФБС-Л, легированную кремнием и ниобием. Для более высоких температур используются трубы из высоколегированных хромистых и хромоникелевых сталей.

Хромокремнемарганцевые стали (хромансиль) обладают большой прочностью, упругостью и хорошо сопротивляются ударным нагрузкам. Содержат углерода (%): сталь 20ХГСА — 0,15—0,25; сталь 25ХГСА —0,22—0,30 и сталь 3ОХГСА — 0,25—0,35. Стали этих марок, кроме углерода, содержат также (%): марганца 0,8—1,1; кремнияТ),9—1,2 и хрома 0,8— 1,1. Содержание серы и фосфора не должно превышать 0,03% Для каждого из этих элементов. В термически обработанном состоянии имеют временное сопротивление 80 кгс/мм 2 , относительное удлинение 10%, ударную вязкость 6 кгс-м/см 2 .

Сварка низколегированных сталей: при выполнении вертикальных и потолочных швов ток уменьшают на 10—20% и применяют электроды диаметром не более 4 мм.

Для уменьшения скорости охлаждения металла шва следует применять стыковые и бортовые соединения, так как при тавровых и нахлесточных соединениях скорость охлаждения выше. Рекомендуется избегать соединений, имеющих швы замкнутого (жесткого контура), если же необходимы такие соединения, то их сваривают короткими участками, обеспечивая подогрев и замедленное охлаждение.

Читайте так же:
Кто должен менять счетчик на лестничной площадке

Сварку стыковых соединений металла толщиной до 6 мм и валиковых швов с катетом до 7 мм выполняют в один слой (однопроходную), что уменьшает скорость охлаждения. Более толстый металл сваривают в несколько слоев длинными участками. Каждый слой должен иметь толщину 0,8—1,2 диаметра электрода. Сверху шва накладывают отжигающий валик, края которого должны располагаться на расстоянии 2—3 мм от границы проплавления основного металла. Отжигающий валик накладывают при температуре предыдущего слоя около 200° С. Для металла толщиной до 40—45 мм применяют многослойную сварку способом «горки» или «каскада». Длину участков (300—350 мм) выбирают с таким расчетом, чтобы предыдущий слой не успевал охладиться ниже 200° С при наложении следующего слоя.

Если сталь склонна к закалке или при сварке на морозе, перед выполнением первого шва применяют местный подогрев горелкой или индуктором до 200—250° С. Предварительный подогрев и последующий отпуск необходимы, если твердость в зоне влияния после сварки составляет 250 единиц по Бринеллю и выше.

При выполнении подварочных швов и заварке прихваток необходимо выполнять условия, для сварки низкоуглеродистых сталей.

Сварку конструкционных низкоуглеродистых сталей производят электродами с фтористокальциевыми покрытиями марок УОНИ-13/45; УОНИ-13/55; УОНИ-13/85; ОЗС-2; ЦУ-1; ДСК-50, ЦЛ-18; НИАТ-5 и другими, дающими более плотный и вязкий наплавленный металл, менее склонный к старению. Электроды с руднокислыми покрытиями (ОММ-5, ЦМ-7 и др.) применять при сварке ответственных конструкций из низколегированных сталей не рекомендуется.

Низколегированные конструкционные стали лучше сваривать электродами типа Э42А, так как металл шва получает дополнительное легирование за счет элементов расплавляемого основного металла и временное сопротивление его повышается до 50 кгс/мм 2 ; при этом металл шва сохраняет высокую пластичность. Сварка электродами типа Э60А дает более прочный, но менее пластичный металл шва вследствие более высокого содержания в нем углерода.

Газовая сварка низколегированных сталей производится нормальным пламенем мощностью 75—100 дм 3 /н при левой и 100— 130 дм г /ч ацетилена при правой сварке на 1 мм толщины металла. В качестве присадки используют проволоку Св-08, Св-08А или Св-10Г2 по ГОСТ 2246—60. Целесообразно проковывать шов при светло-красном калении (800—850°С) с последующей нормализацией нагревом горелкой.

Электрошлаковая сварка низколегированных сталей. Низколегированные стали применяют для изготовления сварных конструкций ответственного назначения, работающих под давлением, при ударных или знакопеременных нагрузках, в условиях низких температур — до 203 К (-70° С) или высоких — до 853К (580° С), в различных агрессивных средах и т. д. Конструкции из этих сталей используют в тяжелом, химическом и нефтяном машиностроении, судостроении, гидротехническом строительстве и т. д.

Низколегированные низкоуглеродистые конструкционные стали содержат, как правило, менее 0,18% С и подразделяются на стали повышенной и высокой прочности.

Низколегированные низкоуглеродистые стали повышенной прочности (09Г2С, 16ГС, 10ХСНД и др.) поставляют по ГОСТ 19282-73 и специальным техническим условиям в горячекатаном или нормализованном состоянии. Они легированы обычно до 1,70% Мn, — 1,20% Si,

0,90% Сr или — 1,30% № и имеют ферритно-перлитную структуру.

Низколегированные высокопрочные стали подразделяют на стали с нитридным упрочнением (14Г2АФ, 16Г2АФ и др.) и термически улучшенные (14Х2ГМР и др.).

Низколегированные ферритноперлитные стали, упрочненные дисперсными нитридами (наиболее часто нитридами алюминия, ванадия или ниобия), поставляют в нормализованном состоянии со следующими характеристиками: oт 450 МН/м 2 (45 кгс/мм 2 ) и ов > 600 МН/м 2 (60 кгс/мм 2 ). Еще более высокие механические свойства высокопрочных низколегированных сталей (σт = 600-800 МН/м 2 , σв = 650-850 МН/м 2 , aн выше 0,35 МДж/м 2 при 233 К) достигаются путем получения структур отпущенного мартенсита или бейнита. В этих целях сталь легируют обычно молибденом (0,15-0,55%) в сочетании с бором, марганцем, хромом или никелем и термически улучшают закалкой и отпуском.

Низколегированные теплоустойчивые стали 12ХМ, 12МХ, 16ГНМ и др., применяемые в котло-турбостроении, а также в химическом и нефтяном машиностроении, легированы до 0,55% Мо и до 1,1% Сг для повышения жаропрочности и жаростойкости. Их поставляют в нормализованном состоянии.

Низколегированные среднеуглеродистые конструкционные стали 20ГСЛ, 35XMЛ и др., поставляемые в термообработанном состоянии (нормализованном или закаленном), наряду с легированием до 1,6% Мn, Cr, Ni и 0,6% Мо содержат повышенное количество углерода (0,15-0,45%). Требования по ударной вязкости для них (ан = 0,3 — 0,45 МДж/м 2 ) оговорены обычно только при комнатной температуре. Наиболее широко низколегированные среднеуглеродистые стали применяют в тяжелом и энергетическом машиностроении для изготовления фасонных отливок.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector