Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дизельные генераторы переменного и постоянного тока

Дизельные генераторы переменного и постоянного тока

Назначение электрогенератора состоит в выработке электроэнергии, то есть в преобразовании механической энергии в электрический ток. По виду вырабатываемого тока выделяют генераторы постоянного и переменного тока.

Особенности конструкции ДГУ постоянного тока

Дизельный генератор постоянного тока состоит из двух основных узлов – неподвижного статора и вращающегося якоря. Помимо того, что статор служит корпусом генератора, на его внутренней поверхности зафиксировано несколько пар магнитов. В основном применяют электрические магниты. Якорь снабжён стальным сердечником и коллектором. В пазах сердечника укладывается рабочая обмотка якоря. Графитовые неподвижные щётки объединяют обе части генератора в единое целое.

Генераторы постоянного тока можно встретить на масштабных промышленных заводах, на электротранспортных предприятиях, судах и на различных производствах, где подключаемое оборудование обладает большим пусковым моментом.

Постоянный ток применяется весьма ограниченно из-за сложности его трансформации. Для повышения или понижения напряжения требуется наличие сложного специализированного оборудования, а также значимые затраты.

Особенности конструкции генератора переменного тока

В основу генератора переменного тока заложен принцип электромагнитной индукции. Электрический ток образуется в замкнутом контуре, представляющем собой проволочную рамку, в процессе пересечения его магнитным полем, которое вращается. Величина магнитного потока увеличивается параллельно скорости вращения рамки.

Ротор – это вращающийся элемент генератора, а статор – неподвижная часть.

По конструкционным особенностям генераторы классифицируются на устройства с неподвижными или статическими магнитными полюсами. В первом случае якорь вращающийся, во втором – неподвижный статор.

Агрегаты с вращающимися магнитными полюсами распространены больше, чем их аналоги поскольку с неподвижной стационарной обмотки статора напряжение снимается произвольно и нет необходимости в сложных токосъёмных конструкциях (контактные кольца, щётки).

Магнитное поле в электрогенераторах постоянного тока образуют неподвижные магниты (катушки возбуждения). А индуцирование электродвижущей силы и снятие напряжения происходит на вращающихся катушках.

Ещё одно отличие состоит в том, что в генераторах переменного тока токоотвод с катушек происходит при присоединении концов рамки к контактным кольцам. А в устройствах постоянного тока концы привязаны к полукольцам, которые изолированы друг от друга. В этом случае рамка выдаёт на внешнюю цепь выпрямленное электрическое напряжение.

Вместо коллектора у ротора генератора переменного тока размещены два кольца, изолированные друг от друга. Ток возникает в катушках статора в процессе вращения ротора и впоследствии передается на приемник.

Поскольку основная часть бытового и промышленного оборудования нуждается в переменном токе, дизельные генераторы предназначены для удовлетворения данного спроса, то есть для выработки переменного тока.

В чем отличие генераторов переменного тока от постоянного

Постоянный ток никогда не меняет своего направления, двигаясь от плюса к минусу. В отличие от постоянного, переменный ток движется между фазой и нулем, меняя направление электронов с определенной частотой, которую указывают в герцах. Частота 50 Гц означает, что изменение направления потока электронов происходит 100 раз в секунду.

Основным преимуществом переменного тока по отношению к постоянному является простота его передачи на большие расстояния и легкость его генерации. При помощи специальных устройств напряжение однофазной сети 220 вольт можно изменять по величине в зависимости от необходимости потребителей.

Приобретение ДГУ постоянного тока для решения бытовых задач на данный момент лишено смысла. Такие модели агрегатов используются в специализированных условиях некоторыми промышленными и производственными предприятиями.

Генераторы Yanmar

В каталоге нашей компании представлен широкий спектр надежных дизельных генераторов переменного тока Yanmar, среди которых:

  • ДГУ от 2 до 45 кВт, с воздушным или жидкостным охлаждением, 1-фазные и 3-фазные
  • ДГУ мощностью от 250 до 3 000 кВт.

Оборудование подойдет в качестве постоянного или альтернативного источника электроэнергии (в аварийных и внештатных ситуациях, при плановом отключении ЛЭП и пр.).

Генератор для дома: инверторный или обычный

Производители выставляют огромное разнообразие генераторной техники. На выбор покупатель приобретает обычный или инверторный генератор. Такие станции легко разрешают проблемы со скачками напряжения, с частичным или полным отключением подачи электроэнергии. Их применяют для дома, дач, пикника, при строительстве, где отсутствуют линии электропередач, и требуется бесперебойное электрическое снабжение.

Критерии выбора генератора

Определяя необходимый человеку тип оборудования нужно внимательно отнестись к подбору и учесть критерии выбора. Основные факторы:

  • по мощности (маломощные, средней мощности, высокой мощности);
  • по виду топлива (бензиновые, дизельные, газовые);
  • по виду управления (ручной запуск, электростартер);
  • по количеству фаз (однофазные, трехфазные);
  • по системе охлаждения (воздушное, жидкостное).

Самый важный критерий первый, который легко определить по установленному оборудованию в доме. Надо выписать на бумаге мощность всех приборов, просуммировать и учесть, что некоторые устройства при старте потребляют больше количества электроэнергии. Причина – большие пусковые токи нагрузки. Добавить сверху 25-30% запаса по мощности и по полученному значению можно приобретать оборудование.

Плюсы и минусы “классического” генератора

Обычный аппарат использует топливо дизельное либо бензин в качестве основного источника энергии, преобразуя механическую энергию в электрическую. Качество вырабатываемой электрической энергии зависит от постоянства работы двигателя. Он должен вращаться со стабильной скоростью. Вот и получается первый минус – огромный расход топлива при частичной загруженности.

В руководстве указывается, что эксплуатировать генератор менее 25% строго запрещено. Прописывают в инструкции и время его работы в таком режиме. Относительно недолго до 1,5 лет. Это второй минус обычного генератора.

Важно!
Внимательно нужно читать инструкции и умело использовать технику в работе. В двигателе при неполной загруженности встречается сажа, что приводит к его поломке.

При таких серьезных недостатках, все-таки встречаются преимущества в работе генератора. Цена гораздо ниже инверторного. Большой выбор по мощности от самых слабеньких до более мощных. Простота в использовании и высокая надежность.

Читайте так же:
Диод шоттки схема включения

Инверторный генератор: достоинства и недостатки

Принцип работы инверторного генератора отличается от обычного тем, что электрическая энергия не поступает в сеть напрямую. Сначала при сгорании топлива производится высокочастотный переменный ток, затем благодаря выпрямителю он преобразуется в постоянный, и накапливается в емкостном фильтре (в виде аккумуляторной батареи).

Заменить аккумулятор невозможно после того, как он отработает определенный ресурс. Потребуется замена самого блока инвертора. Это является недостатком генератора. Минусом считается и значительное ограничение моделей по мощности. Производители не выпускают аппараты мощностью более 7 кВт. Еще отрицательным моментом является высокая цена. Инверторный генератор подбирается под определенную нагрузку. Ее увеличение (включение дополнительных бытовых приборов) быстро разряжает аккумулятор. Это в свою очередь приводит скорейшему выходу из строя генератора.

Скачки напряжения не влияют на работу аппарата. Если напряжение резко упадет, то сработает защита, и инвертор отключится, не произойдет перегрузки по входному току. Это безусловное преимущество. Такой генератор будет практически работать без шума.

На заметку!

Важным плюсом инверторного генератора является компактность и маленький вес, что дает возможность его непринужденно перевозить. Расход топлива гораздо меньше, чем у обычного.

При покупке главное решить, для каких целей берется устройство. Важный момент время работы. То есть стоит обдумать, генератор будет включаться в случае резервного/аварийного электрического снабжения, или использоваться как постоянный источник электричества.

Постоянный и переменный ток

Электричество – это тип энергии, передаваемый движением электронов через проводящий материал. Например, металлы представляют собой материалы с высокой электропроводностью и позволяют легко перемещать электроны. Внутри проводящего материала электроны могут двигаться в одном или нескольких направлениях.

Электрический ток

Понятие о постоянном и переменном токе

Что такое постоянный ток, определяется из характера движения электрозарядов. Аналогично можно установить, что такое переменный ток.

  1. Когда поток электрозарядов задан в одном направлении, он считается постоянным током;
  2. Когда электронный поток меняет направление и интенсивность во времени, он называется переменным током. Причем изменения идут циклически, по синусоидальному закону.

Большинство современных электросетей используют переменный электрический ток, производящийся на электростанциях соответствующими генераторами.

Графики постоянного и переменного токов

Графики постоянного и переменного токов

Постоянный ток (DC) генерируется батареями, топливными элементами и фотоэлектрическими модулями. Существуют и генераторы постоянного тока. Другое его получение – преобразование из однофазного и трехфазного переменного тока (АС) с помощью выпрямительных устройств.

В обратном случае АС может быть получен из DC, используя инверторы, хотя технология здесь несколько сложнее.

История

В природе электричество встречается относительно редко: оно генерируется только несколькими животными и существует в некоторых природных явлениях. В поисках искусственной генерации потока электронов ученые поняли, что можно заставить электроны проходить через металлическую проволоку или другой проводящий материал, но только в одном направлении, так как они отталкиваются от одного полюса и притягиваются к другому. Так родились батареи и генераторы постоянного тока. Изобретение приписывается, в основном, Томасу Эдисону.

В конце 19-го века другой известный ученый, Никола Тесла, разрабатывал способы получения переменного тока. Основными причинами работ в этой области явились обнаруженные недостатки постоянного тока при передаче электроэнергии на большие дистанции. Оказалось, что для переменного тока гораздо проще повысить напряжение передающих линий, тем самым уменьшив потери и получив возможность транспортировки больших объемов электрической энергии, а эффективно повысить напряжение на линиях с постоянным током в те времена было неосуществимо.

Для получения переменного тока Тесла использовал вращающееся магнитное поле. Если МП изменяет направленность, направление электронного потока также варьируется, и генерируется переменный ток.

Изменение направления в электронном потоке осуществляется очень быстро, много раз в секунду. Измерения частоты производятся в герцах (равных циклам в секунду). Таким образом, переменный ток частоты 50 Гц можно представить, как выполнение 50 циклов в секунду. В каждом цикле электроны изменяют направление и возвращаются к первоначальному, поэтому поток электронов изменяет направленность 100 раз в секунду.

Сравнительные характеристики постоянного и переменного токов

Разница между двумя видами токов заключена в их природе и вытекающих из этого свойствах.

Отличие постоянного тока от переменного:

  1. При переменном токе изменяется направленность и интенсивность электронного потока, при постоянном – она неизменна;
  2. Частота постоянного тока не может существовать. Это понятие применимо только для переменного тока;
  3. Полюсы (плюс и минус) всегда одинаковы в электроцепи постоянного тока. В электроцепи переменного тока положительные и отрицательные полюса меняются с периодическими интервалами;
  4. При передаче переменного тока напряжение легко преобразуется и транспортируется с приемлемым уровнем потерь.

Изменение полярности подключения DC может привести к необратимому повреждению устройств. Чтобы этого избежать, на оборудовании обычно ставятся обозначения полюсов. Аналогично контакты отличаются традиционным использованием металлической пружины для отрицательного полюса и пластины – для положительного. В устройствах с перезаряжаемыми батареями трансформатор-выпрямитель имеет выход, так что соединение выполняется только одним способом, что предотвращает инверсию полярности.

Обозначение полярности на аккумуляторе

Обозначение полярности на аккумуляторе

В крупномасштабных установках, например, на телефонных станциях и другом телекоммуникационном оборудовании, где имеется централизованное распределение постоянного тока, используются специальные соединительные и защитные элементы,

Читайте так же:
Прикрепила вибратор к стене

Постоянный и переменный ток имеют свои достоинства и недостатки, отражающиеся на области их применения. По преимуществу широта использования переменного тока объясняется легкостью его преобразования.

Различия при транспортировке

Когда ток течет, часть энергии электронов преобразуется в тепло, благодаря активному сопротивлению проводов. Электрические нагреватели тоже основаны на этом эффекте. В конце линии меньше энергии передается потребителю. Рассеиваемые мощности называются потерями. Для уменьшения потерь применяется повышение напряжения при транспортировке. Эти физические зависимости применимы и к постоянному, и к переменному току, однако при реализации схем передачи возникают различия.

Достоинства и недостатки переменного тока

При начале строительства передающих электросетей использование трансформаторов было единственной возможностью получать высокие напряжения и затем снижать их до нужного уровня при распределении к потребителям. Такая технология называлась трансформаторной, и до сих пор структура транспортировки электроэнергии не изменилась. Почти повсеместно используется переменный ток, который представляет собой трехфазные системы.

ЛЭП переменного тока

ЛЭП переменного тока

Позже стали конструироваться и линии постоянного тока, которые последние годы используются все шире. Возросший интерес к их применению объясняется существенными недостатками систем переменного тока: в длинных линиях потери электроэнергии значительны. Причинами их являются наличие емкостного и индуктивного сопротивлений.

  1. При быстрой смене направления потока электронов наблюдается похожий на перезарядку конденсаторов эффект. Возникают дополнительные емкостные токи. Особенно это сказывается на наземных и подводных кабелях, изолирующий слой которых обладает высоким конденсаторным эффектом;
  2. Индуктивное сопротивление линий появляется потому, что электрические токи генерируют магнитные поля, меняющиеся с частотой тока. Появляются индуктивные токи.

Важно! Оба вида реактивных сопротивлений возрастают с увеличением протяженности линий.

Достоинства переменного тока:

  • легкая трансформация напряжения;
  • возможность комбинирования различных систем передачи;
  • возможность использования общесистемной частоты.

Недостатки переменного тока:

  • необходимость компенсации реактивной мощности при транспортировке на значительные расстояния;
  • сравнительно высокие потери.

Достоинства и недостатки постоянного тока

В первую очередь, чем отличается переменный ток от постоянного, – это присутствием источников потерь на реактивную энергию. Однако постоянный электрический ток предполагает потери на нагрев. Точное их определение зависит от технологии и уровня напряжения. Для высоких напряжений – около 3% на 1000 км.

Другим источником потерь в системах электропередачи на постоянном токе служат подстанции для преобразования переменного тока в постоянный, и наоборот. Суммарные потери намного ниже, чем для переменного тока, но существенными являются материальные затраты на строительство этих подстанций.

Оборудование для высоковольтной ЛЭП постоянного тока

Оборудование для высоковольтной ЛЭП постоянного тока

Важно! Для повышения рентабельности линий электропередачи на постоянном токе применяются ЛЭП большой длины.

Техническое развитие в последнее время получила передача электроэнергии на постоянном токе, благодаря разработке новых электронных компонентов для создания высоких уровней напряжения постоянного тока – высокопроизводительных тиристоров или биполярных транзисторов.

Интересно. Сегодня возможны системы передачи постоянного тока с напряжением до 800 кВ и пропускной способностью до 8000 мВт на расстояние более 2000 км.

Преимущества высоковольтных ЛЭП постоянного тока:

  • возможность передачи мощности по подводным, наземным и подземным кабельным линиям на большие расстояния;
  • нет потерь из-за реактивной мощности;
  • лучшее использование изоляции кабелей.

Недостатки высоковольтных ЛЭП постоянного тока:

  • недостаточно быстрая коммутация существующих каналов постоянного тока;
  • мало стандартизированной электротехники;
  • не развиты распределительные сети передачи электроэнергии, транспортировка ведется от пункта до пункта.

Другие варианты применения постоянного и переменного тока

  1. DC идеально подходит для зарядки аккумуляторов и батарей элементов. Им нужно такое питание, потому что зарядная мощность всегда должна идти в одном направлении. Соответственно, устройства, работающие от аккумуляторов, также нуждаются в DC, например, фонарик или ноутбук;
  2. Телевидение, радио, компьютерная техника используют DC;
  3. Используемые в промышленности и в быту электродвигатели работают как на АС, так и на DC. То же относится к плитам, утюгам, чайникам и лампам накаливания;
  4. DC нужен для установок электролиза, где важно наличие неизменных полюсов. Только иногда полярность соблюдать не обязательно, в частности при электролизе газов. Тогда может применяться переменный электроток;
  5. Около половины мировых контактных сетей железнодорожного транспорта используют DC. В начале развития электрифицированных железных дорог были попытки применения трехфазных двигателей, но создание контактной сети для них столкнулось с проблемами. На DC работает городской электротранспорт: трамваи, троллейбусы, метро. Другой способ устройства железнодорожных контактных сетей – применение одной фазы переменного тока;

Контактная сеть железных дорог

Контактная сеть железных дорог

  1. Для измерения токов, напряжений и мощности существуют приборы. Есть работающие только на DC, как магнитоэлектрические амперметры, а также использующие только АС, как индукционные счетчики. Часто используют универсальную измерительную технику.

Оба вида тока востребованы и применяются в различных областях. Какой из них использовать, зависит от принципа работы электрооборудования и приборов.

Видео

Генератор без щеток принцип работы

Генераторы с компаундным возбуждением и компенсирующей ёмкостью

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Читайте так же:
Бензопила какую марку выбрать для дома

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Устройство

Самыми распространенными, за счет простоты конструкции и практической надежности, являются бесщеточные синхронные генераторы с компаундной системой возбуждения.

Как любая другая электрическая машина, данный генератор состоит из двух ключевых узлов:

  • вращающийся ротор, с расположенными на нем обмотками возбуждения с выпрямительными диодами;
  • неподвижный статор, с основной обмотки которого снимается напряжение для питания потребительской нагрузки, а дополнительная обмотка с компенсирующим конденсатором предназначена для усиления магнитного потока. Обмотки статора питаются напрямую от ступенчатого стабилизатора напряжения и, как правило, соединены по схеме «звезда».

При пуске генератора, ток в обмотках ротора индуцируется остаточной намагниченностью железа генератора. За счет кремниевых выпрямительных диодов, ток индуцирует постоянное магнитное поле, которое при вращении приводит к возбуждению ЭДС в статорных обмотках. Замкнутая через компенсирующий конденсатор дополнительная обмотка, усиливает начальную намагниченность и запускает процесс лавинообразного возбуждения генератора, продолжающийся до момента насыщения магнитного потока. После этого, к генератору можно подключать потребительские устройства и агрегаты.

Чтобы подключение нагрузки не приводило к понижению выдаваемого напряжения, применяется компаундное регулирование. Оно осуществляется за счет того, что обмотки статора располагаются таким образом, чтобы оси их магнитных полей были смещены на 90 градусов. При этом, увеличение тока в цепи нагрузки приводит к повороту магнитного поля ротора в сторону основной обмотки и, следовательно, увеличению индуцируемой в ней ЭДС. Выходное напряжение стабилизируется.

Преимущества и недостатки

По сравнению с обычными генераторами бесщёточный имеет ряд преимуществ:

  1. Нет угольной пыли, являющейся причиной электрических пробоев.
  2. Нет необходимости в замене изношенных щеток и проточке коллектора якоря.
  3. Меньшее количество механических конструкций даёт более высокую надежность при минимальных трудозатратах на обслуживание.
  4. На работу бесщёточного синхронного генератора не влияют окружающие климатические условия, его применение экономически целесообразно.
  5. Бесщёточные генераторы просты по конструкции и недороги.

К недостаткам можно отнести то, что данные генераторы могут быть только однофазными и имеют невысокий КПД, что, впрочем, устранимо путем применения системы независимого возбуждения с электронными регуляторами.

Бесщёточный синхронный генератор в настоящее время активно используется в бензиновых электростанциях, в речных и морских судах — везде, где их применение оправдано требованиями повышенной надёжности и долгого срока эксплуатации.

Принцип работы и устройство современного автомобильного генератора

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Читайте так же:
Каракат из бензопилы урал

фото 1

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

фото 2

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

фото 3

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

фото 4

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

фото 5

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

фото 6

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Читайте так же:
Цепная электропила российского производства

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

фото 7

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

фото 8

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Так как генератор автомобиля и аккумулятор работают неотъемлемо друг от друга, при неисправности любого из устройств загорится лампа разряда аккумулятора, а также может загореться индикатор “Check Engine”. Проверить состояние аккумулятора и диагностировать неисправность можно с помощью универсального автомобильного сканера Rokodil ScanX Pro.

фото7

На неисправность, связанную с генератором или плохим электрическим соединением в цепи управления часто указывают ошибки P0620 и P0622.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector