Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сборка 3D-принтера своими руками

Сборка 3D-принтера своими руками

Конструкторы для обучения детей робототехнике

Публикуем статью о самостоятельной сборке 3D-принтера из журнала «Юный техник и изобретатель». Автор — Данила Елисеев, учащийся 9 класса гимназии № 6 г. Минска, абсолютный победитель V конкурса научно-технического творчества учащихся Союзного государства «Таланты XXI века».

Будучи на минском Робофесте, мы познакомились с Константином Столярчуком — редактором издания «Юный техник и изобретатель». На страницах журнала вы найдете статьи о научно-техническом творчестве, интересных проектах и мероприятиях, чертежи и инструкции по сборке моделей. Журнал не имеет электронной версии, но на него можно подписаться (информация в конце статьи).

Сборка 3D-принтера своими руками

3D-печать — это построение реального объекта по созданному на компьютере образцу 3D-модели. В дальнейшем она сохраняется в формате Gcode-файла, после чего 3D-принтер, на который выводится файл для печати, формирует реальное изделие. Такой принтер работает по принципу послойного создания твёрдого изделия — оно как бы выращивается из определённого материала.

Увлекаясь созданием самодельных электронных устройств, я решил собрать собственный 3D-принтер, по основным характеристикам не уступающий серийным. Чтобы он был удобным для начинки электроникой, выбрал конструкцию Graber I3 и уложился в бюджет $200.

Детали и чертежи

Данила Елисеев, учащийся 9 класса гимназии № 6 г. Минска.

Для изготовления корпуса из фанеры я использовал чертежи с сайта RepRap.org/wiki/. Детали собирал по инструкции для принтера Graber I3. На торговой платформе Aliexpress приобрёл совместимые друг с другом элементы: термисторы, концевые переключатели, платы управления, шаговые двигатели и контроллеры для них, валы, подшипники, дисплей. Использовал схему подключения электроники, которая есть в свободном доступе в Интернете.

Самыми сложными и трудоёмкими этапами работы оказались настройка электроники и калибровка шаговых двигателей. Также потребовался обдув сопла — он предотвращает растекание расплавленного пластика, позволяя повысить качество и скорость печати.

Для автономной работы 3D-принтера, вывода и настройки печати служит специальный экран, в котором есть вход для SD-карты. Это позволяет следить за процессом, настраивать подачу материала, скорость печати, мощность обдува и т. д.

Корпус и электроника

Сначала я сделал прошивку для принтера, а затем в соответствии с чертежом установил электронные узлы в корпус. Для изготовления экструдера также воспользовался готовыми чертежами. Потом занялся настройкой прошивки, термисторами и микропереключателями («концевиками»).

Конструкция корпуса 3D-принтера

Теперь предстояло настроить электронную систему. Что в неё вошло?

В основе — плата Arduino mega 2560, имеющая самое большое количество контактов ввода-вывода. Ramps 1.4 — плата, часто называемая «шилд», создана для удобного подключения всех элементов (поверх платы Arduino). Также понадобились: 4-5 драйверов шаговых двигателей; печатающая голова E3D V6 для пластика диаметром 1,75 мм и диаметром сопла 0,4 мм; шаговые двигатели Nema17 17HS4401; стандартный жидкокристаллический экран LCD 2004. Кроме того, использованы термисторы, концевые переключатели, нагревательный стол.

Механическая часть

Для неё я применил известную кинематику Mendel. Принтер построен так, что экструдер — механизм подачи материала — двигается по оси Х (вправо-влево) и по оси Z (вверх-вниз). Стол же двигается по оси Y (вперёд-назад). Всё просто, но у конструкции много крепежей, гаек, винтиков, которые крайне важно одновременно держать настроенными на правильную геометрию. Если не использовать различные фиксаторы резьбы, то качество печати будет «уплывать».

Я использовал шпильки для оси Z и ремни для осей X и Y, а также комплект валов разной длины. Хорошие шпильки обеспечивают до 70 % качества такого 3D-принтера.

Технология НРМ (FFF)

Эта технология позволяет создавать не только модели, но и высококачественные детали из термопластиков — сложные многоуровневые формы, полости и отверстия, которые трудно получить обычными методами. Она выгодно отличается чистотой, простотой в использовании и пригодна для применения в офисах.

Для печати используют два различных материала. Из основного будет состоять готовая деталь, а вспомогательный нужен для поддержки. Нити обоих подаются в печатающую головку. Она передвигается в зависимости от изменения координат X и Y и наплавляет материал, пока основание не переместится вниз и не начнётся следующий слой. Когда принтер завершит работу, остаётся отделить вспомогательный материал механически или растворить его моющим средством. После этого изделие готово к использованию.

Читайте так же:
Шаблон для кладки кирпича своими руками

FFF-технология

Программы

Для настройки и прошивки микроконтроллера применена стандартная среда Arduino IDE. Она позволяет программировать, в частности, на языке С++ и адаптирована для работы с микроконтроллерами.

Для калибровки использована среда Pronterface. Она даёт возможность преобразовать 3D-модель из формата .stl в формат .gcode, провести полное тестирование всех систем, настроить датчики и в режиме реального времени проконтролировать процесс печати.

Для более гибкой и точной настройки печати применена Cura Software. С помощью этой программы я смог настраивать степень заполнения объекта, а также способ печати и параметры: диаметр сопла, температуру плавления пластика, толщину начального и конечного его слоёв. Все они влияют на продолжительность печати и качество изделия.

В основу прошивки положен проект Marlin (находится в открытом доступе). Это наиболее распространённая прошивка, но для разных принтеров она настраивается по-разному. С учётом особенностей конструкции данного принтера были внесены коррективы.

На финише

Как измерить шаг винта? Необходимо длину участка в миллиметрах разделить на количество витков на нём (у меня 20/16 = 1,25 мм). Для более точного результата замеряют участок максимальной длины.

LCD-дисплей с SD-картой я нашёл на RepRap.org и идентифицировал как RepRapDiscount Smart Controller.

Чтобы залить прошивку в контроллер, надо в Arduino IDE правильно выставить тип платы и номер COM-порта. Внизу окна отобразятся и тип, и номер. Главное — не забывать сохранять изменения (Ctrl + S).

В целом на сборку принтера я потратил 2 месяца. Стекло, на котором можно вести печать, было заказано на стеклорезной фирме.

Работающий 3D-принтер

Как подписаться на журнал «Юный техник и изобретатель» (ISSN 1993-4432)

Вы можете подписаться на журнал «Юный техник и изобретатель» (ISSN 1993-4432). Подписные индексы (индивидуальная подписка): 93508 — в каталоге «Пресса России» и 00200 — в каталоге «Белпочта».

3D принтер своими руками — часть 2

Продолжение статьи, о том, как сделать самодельный 3D принтер (часть 1).

1111

Шаг 6: Электропроводка и регулирование интенсивности тока

60ф

Теперь все готово к тому, чтобы протестировать двигатели принтера. Подключите компьютер к контроллеру, используя USB кабель, двигатели должны быть подключены к соответствующим выводам. Запустите Repetier Host и активируйте связь между программным обеспечением и контроллером, выбрав для этого соответствующий последовательный порт. Если соединение прошло успешно, вы сможете контролировать подключение двигателей с помощью ручного управления.
Для того, чтобы избежать перегрева двигателей, во время постоянного использования, будем регулировать какую величину тока подавать на какой двигатель. Это важная операция, для того чтобы избежать потерь шага.
Для этого подключим только один двигатель, который соответствует одной оси. Такую же операцию будем проводить и для двух оставшихся двигателей. Для этого шага нам нужен мультиметр, который подключен последовательно между источником питания и контроллером. Мультиметр должен быть выставлен в режим измерения тока (смотрите рисунок).

FMHCKM9I236H0GW

Затем подключим контроллер к компьютеру, измерив при этом ток с помощью мультиметра. После того, как двигатель активирован через интерфейс Repetier, ток должен вырасти на определенную величину. На дисплее мультиметра показан ток, что идет в работающий шаговый двигатель. Нужно определить ток для каждого двигателя-оси. Все значение отличаются друг от друга. Необходимо настроить небольшой потенциометр для шагового двигателя и установить ограничение по значению для каждой оси в соответствии со следующими контрольными значениями:
• По разводной плате течет ток примерно 80mA;
• Назначим ток в 200mA для X и Y осей шаговых двигателей;
400mA для Z-оси потому, что ей нужно больше энергии для перемещения каретки;
400mA для двигателя экструдера, поскольку он другого типа.

Читайте так же:
Телеантенна своими руками для дачи

Шаг 7: Постройка структуры принтера

F5W0ERHI236HEHL

В следующей ссылке вы найдете необходимые шаблоны деталей рамы, что следует вырезать. Используем акриловые пластины толщиной 5 мм, но можно использовать и другие материалы, такие как дерево, в зависимости от наличия в магазинах и цен на них. Файл шаблона: e-waste_laser_frame
Конструкция рамы позволяет собрать всю конструкцию без использования клеия, части собраны с помощью механических соединений и винтов. Перед вырезанием элементов рамы, убедитесь в том, что отверстия для двигателей расположены в соответствии с частями CD/DVD, что использованы для постройки принтера. Проведите измерения и внесите необходимые изменения для отверстий двигателей в шаблоне CAD.

Шаг 8: Калибровка X, Y и Z осей

Хотя скачанная прошивка Marlin имеет стандартную калибровку регулирования осей. Вам придётся пройти этот шаг, если вы хотите настроить точность принтера.
Ниже рассказывается, о прошивке для перемещения рабочей части принтера на миллиметры. Это значения зависит от количества шагов на оборот двигателя и размеров резьбы в движущемся стержне оси.
Эти процедуры необходимо сделать для того, чтобы убедится в том, что движения принтера на самом деле соответствуют расстояниям заданным в g-коде.
Знания того, как это все работает, позволит нам самостоятельно построить ЧПУ-принтер независимо от типа составных частей и размеров будущей машины. В случае данного проекта оси X, Y и Z имеют одинаковые резьбовые стержни, поэтому калибровочные значения будут одинаковы для всех (для разных компонентов и соответственно разных осей – калибровочные значения будут отличаться).
Нужно рассчитать количество шагов двигателя для перемещения каретки на 1 мм, это будет зависеть от:
• Радиус шкива;
• Количество шагов на 1 оборот шагового двигателя;
• Параметры микро-шагов в электронике (в нашем случае 1/16, это означает, что за один такт (шаг) сигнала, выполняется только 1/16 шага, давая таким образом более высокую точность системы).
Установим эти значения в прошивке (stepspermillimeter).
Для оси Z:
Используем интерфейс контроллера (Repetier), установив для оси определенное расстояние и измерив реальное смещение. В качестве примера приведем следующие значения. Зададим оси Z, переместиться на 10 мм и измерим смещение в 37,4 мм.
Существует N число шагов в прошивке (stepspermillimeter)
(X=80, Y=80, Z=2560, EXTR=777.6).
N = 2560
N = N*10/37.4
Новое значение должно быть 682.67.
Повторим в течении 3-х раз перекомпиляцию и перезагрузку прошивки контроллера, для более высокой точности.
В настоящем проекте не используются функции возврата каретки, это сделано по причине упрощения программной части машины, но они быть легко включены в установленную прошивку. Функции возврата делают самонаведение принтера более легким. Их отсутствие заставит пользователя перемешать каретку вручную, для введения её в область печати.

Шаг 9: Экструдер

90ф

Привод подачи пластикового волокна состоит из шагового двигателя NEMA 17 и MK7/MK8 привода шестерни, что нужно купить для проекта. Также необходимо скачать драйвер управления частями экструдера 3D принтера, что вы можете скачать по ссылкам ниже
1) Экструдер в состоянии покоя:e-waste_extruder_idle
2) «тело» экструдера : e-waste_extruder_body
3) «горячее сопло»:RepRapPro_mount

91ф

Пластиковое волокно, после того, как втягивается в экструдер, попадает в нагревательную камеру.
Между барабаном с волокном и нагревательной камерой, волокно направляется вовнутрь гибкой тефлоновой трубки.
Соберем прямой привод, что показан на рисунке, прикрепив к нему шаговый двигатель и закрепив его на акриловой раме.
Для калибровки потока пластика нужно измерить расстояние (например 100 мм) и положить кусочек ленты в этом месте. Затем перейдите в программное обеспечение Repetier и выставьте на экструдере 100 мм, после чего измерьте реальное расстояние и повторите шаг 9.

Читайте так же:
Самые полезные самоделки сделанные своими руками

Шаг 10: Первое испытание

Теперь принтер готов к первому тесту. Экструдер использует пластиковое волокно диаметром 1,75 мм, которое легче прессовать и оно более гибкое, чем стандартное диаметром 3 мм. Также для работы принтера потребуется меньше энергии, нежели в случае использования 3 мм. Используем PLA пластик – это биопластик, который имеет ряд преимуществ по сравнению с ABS: он плавится при более низкой температуре, придает легкость при печати кареткой и имеет незначительный эффект втягивания.
Запустим Repetier, необходимо активировать срезы профилей Skeinforge.
Напечатаем небольшой куб для проверки калибровки (10x10x10mm) потому, что он напечатается очень быстро и сразу можно будет обнаружить проблемы конфигурации и потерю шагов моторов, путем проверки фактического размера напечатанного куба.
Для начала печати откроем модель STL и проводим нарезку используя при этом стандартный профиль (или тот что вы скачали) для Skeinforge: увидим представления нарезанного объекта и соответствующий ему g-код. Подогреваем экструдер, после того как он достигнет температуры плавления пластика (190-210C в зависимости от марки пластика) выдавим немного пластика, что бы убедится том, горячее сопло и привод подачи волокна работают должным образом.


Переместим экструзионную головку в начало координат (x=0, y=0, z=0), заботясь о том, чтобы экстр. головка была как можно ближе к каретке, при этом не касаясь её (возьмите листок бумаги в качестве разделителя). Это будет исходное положение экструзионной головки. С этого момента можем начинать печатать.

Экструдер для 3d принтера: из чего состоит, и как его выбрать?

Экструдер для 3d принтера: из чего состоит, и как его выбрать?

Любой принтер для трехмерной печати имеет определенные особенности в своей конструкции. Главная составляющая каждого – это экструдер для 3d принтера. Если говорить простым языком, это печатающая головка, которая создает новые предметы. Ее принцип работы прост: через нее специальное сопло выдавливает пластик, из которого складывается 3D-рисунок.

Конструкция экструдера для 3d принтера

Стандартный 3D-принтер функционирует на основе нитевидного пластика. Существует множество его разновидностей, но обычно применяют ABS и PLA. Несмотря на то, что материалы могут отличаться, конструкция экструдера изготавливается по одному и тому же принципу.

Любой экструдер для 3d принтера состоит из двух частей:

  • блок cool-end отвечает за подачу филамента. В его конструкцию включены привод от электромотора, прижимной механизм, шестерни. За счет вращения шестерни из катушки выходит нить из пластика, которая проходит в нагреватель. Там нить становится вязкой под воздействием высоких температур. Это помогает выдавить ее через сопло и превратить в необходимую форму.
  • блок hot-end – это сопло с нагревательным элементом. Обычно оно сделано из алюминия или латуни, так как эти материалы имеют хорошую теплопроводность. Нагреватель состоит из нихровомой спирали, нескольких резисторов и термопары. В процессе работы этот блок разогревается, что способствует плавлению пластика. За охлаждение рабочей поверхности отвечает термоизолирующая вставка между блоками.

Как выбирать экструдер?

3D Print Expo: Экструдер для 3d принтера: из чего состоит, и как его выбрать?

Чтобы 3D-принтер работал качественно, так же качественно нужно подобрать печатающую головку. Как выбирать экструдер для 3d принтера – вопрос сложный, но есть несколько моментов, которые помогут принять правильное решение при покупке:

Тип материала. Современные экструдеры либо созданы с помощью 3D-принтеров, либо оснащены литыми элементами. Второй вариант будет более прочным в применении, что важно при больших нагрузках. Преимущество напечатанных головок – это низкая стоимость.

Способ подачи филамента. Эта деталь очень важна, так как через нее нить подается к нагревателю. Весь процесс должен быть аккуратным и бесперебойным, чтобы пластик не запутался при подаче к соплу.

Читайте так же:
Схема дымогенератора для холодного копчения своими руками

Вид подающего ролика. Довольно часто случается так, что из-за плохого сцепления материала с подающем роликом начинает проскальзывать нить. Чаще всего такое случается с нитями из нейлона.

Параметры сопла. Печатающая головка может быть оснащена соплами различных размеров. От того, какую фигуру мы хотим получить в итоге, будет зависеть диаметр сопла.

Разработка экструдера для изготовления пластиковой нити для 3D принтеров (FDM)

Крутов, Е. С. Разработка экструдера для изготовления пластиковой нити для 3D принтеров (FDM) / Е. С. Крутов. — Текст : непосредственный // Молодой ученый. — 2020. — № 26.1 (316.1). — С. 21-24. — URL: https://moluch.ru/archive/316/72273/ (дата обращения: 15.12.2021).

Статья посвящена рассмотрению профессий и компетенций будущего на основе новой индустриальной модели. Проанализированы характерные особенности аддитивных технологий. Обобщен и представлен опыт реализации ФГОС СПО по специальности «Аддитивные технологии».

Ключевые слова: аддитивные технологии, пластиковая нить для 3D, притинг, экструдер.

В настоящее время на предприятиях и в учреждениях нашли широкое применение аддитивные технологии. Аддитивные технологии — инновации в сфере промышленности и производства. Цифровые новшества с использование 3D принтинга.

Аддитивные технологии — изготовление (построение) физического объекта (детали) методом послойного нанесения (добавления, англ.- «add») материала, в отличие от традиционных методов формирования детали, за счет удаления (sudtraction — вычитание) материала из массива заготовки. Суть аддитивных технологий можно проиллюстрировать простым примером на рисунке 2.

Преимущества аддитивных технологий

Аддитивные технологии, успешно используемые в машиностроении и других сферах, дают очевидные выгоды:

Экономия ресурсов. Готовые изделия «выращивают», благодаря чему можно говорить о безотходном производстве. Кроме того, исключаются расходы на утилизацию отходов. Для сравнения, потери материала на заготовках при использовании консервативных методов металлообработки могут доходить до 85 %;

Аддитивные технологии

Рис.1. Аддитивные технологии

Ускорение процесса производства . Сокращение цикла от момента разработки проекта до выпуска готовых изделий дает конкурентные преимущества. Компьютерное моделирование не требует долгих расчетов и многочисленных чертежей. При этом скорость не вредит качеству;

Точность параметров . При послойном синтезе удается достигать максимального соответствия по плотности, остаточному напряжению, техническим показателям. Прочность изделий на 20–30 % выше, чем у литых и кованых.

Мобильность . Запуск производства новой серии изделий не требует длительной подготовки, закупки громоздкого оборудования. Процесс гибкий, что позволяет адаптироваться к меняющемся условиям рынка. Модели можно передавать по средствам компьютерной техники в любой уголок планеты в считаные секунды.

Для таких отраслей как авиастроение, важное преимущество- снижение веса изделий, получаемых за счет внедрения аддитивных технологий. Отдельные детали удается сделать легче на 40–50 % без потерь в прочности.

На рисунке 2 представлена сравнительная таблица преимуществ аддитивных технологий с традиционными методами формирования детали, за счет удаления материала из массива заготовки.

Сравнительная таблица преимуществ традиционного производства и аддитивных технологий

Рис.2. Сравнительная таблица преимуществ традиционного производства и аддитивных технологий

FDM (Fused Deposition Modeling) — моделирование методом наплавления (метод моделирования путем послойной укладки расплавленной нити Преимущества: высокая точность исполнения прототипа; высокая скорость 3D-печати; возможность использования широкого спектра полимеров; низкая стоимость 3D-печати прототипа. Недостатки: ограничения по допускам размерности 3D-печати; необходимость в постобработке.

Материалы для печати: термопластичная нить (PLA, ABS, PET, TPU) Точность измерения: ±0.5 % (нижний предел ±0.5 mm).

Общее применение: электрические корпуса; проверка форм и соответствия; монтажные и установочные приспособления; образец выплавляемых моделей.

Моделирование методом наплавления (FDM)

Рис.3. Моделирование методом наплавления (FDM)

Каждое образовательное учреждение, которое в своем распоряжении имеет 3D принтеры, нуждается в расходных материалах.

Порой, в организациях не хватает денежных средств, чтобы заказать расходные материалы для работы 3D принтеров (катушки пластика). В данном проекте предлагается на рассмотрение экструдер для изготовления пластиковой нити.

На данный момент существует много видов пластика для печати на 3D принтерах (FDM), стоимость их колеблется в диапазоне 800–1500 т.р за 1 катушку. При ежедневном использовании принтера, 1 катушки пластика хватает на 3 недели. В настоящий момент в нашей лаборатории 8 принтеров, исходя из этих цифр получается, что примерно за месяц мы расходуем 8 катушек на сумму 8000 т.р. Техникум заинтересован в снижении затрат на расходные материалы. Поэтому у нас возникла идея уменьшить затраты на расходный материал изготовив экструдер для изготовления пластиковой нити для 3D принтера (FDM). Что в свою очередь значительно уменьшит затраты на покупку расходных материалов.

Читайте так же:
Ролик для гриндера из фанеры своими руками

Уменьшение затрат на расходный материал для печати на 3 D принтере, за счет самостоятельного изготовления пластиковой нити. На основании практических навыков и теоретических знаний можно изготовить экструдер для изготовления пластиковой нити для 3D принтера (FDM).

Для достижения поставленной цели необходимо было решить следующие задачи:

  1. Провести мониторинг имеющихся устройств для изготовления пластиковой нити и их ценового диапазона.
  2. Изучить типовые конфигурации устройств.
  3. Разработка собственного аналога устройства.
  4. Рассчитать себестоимость и рентабельность изготовления экструдера для изготовления пластиковой нити.

Одним из новейших устройств в мире 3D-печати является экструдер для самостоятельного изготовления пластиковой нити для 3д печати. И речь идет не печатающих головках FDM- принтеров, хотя технологии одинаковы, а речь идет о портативных настольных машинах для изготовления пластиковой нити.

Экструдер представляет собой устройство, которое путем плавления расходного материла и дальнейшего выдавливания расплавленного сырья через отверстие диаметром 1,75; 2,85 или 3мм. Фактически, экструдер представляет собой механизм мясорубки, но с дополнительным механизмом как нагревательный элемент. Именно подобные установки используются при промышленных производствах прутка для 3д печати.

Проанализировав характеристики и ценовой диапазон экструдеров для изготовления пластиковой нити для печати на 3 D принтере, мы пришли к выводу, что изготовить устройство самим будет выгодней с экономической точки зрения.

Мы спроектировали экструдер для изготовления пластиковой нити для печати на 3D (FDM). Принцип работы экструдера состоит в следующем: шаговый мотор типа Nema 23 вращает шнек, на который через бункер засыпается сырье в виде пластиковых гранул, шнек в свою очередь перемещает гранулы пластика к нагревательному элементу который расплавляет сырье до пластичного состояния, после чего попадает в головку экструдера откуда уже готовый пруток диаметром 1,75мм и выдавливается. Отсюда пластиковая нить попадает в резервуар с водой, которая имеет постоянную температуру.

Последующие движения прутка обеспечивают два электродвигателя которые наматывают его на катушку (рисунок 4).

Схема комплектации экструдера для изготовления пластиковой нити для печати на 3D принтере (FDM)

Рис.4. Схема комплектации экструдера для изготовления пластиковой нити для печати на 3D принтере (FDM)

Исходя из этого общая стоимость нашего экструдера выходит 8500 рублей, что намного дешевле зарубежных аналогов. За сет этого решается поставленная нами задача, а именно уменьшение затрат на расходные материалы.

Изучив компании РФ, которые занимаются изготовлением устройств, был сделан вывод о том, что ни одна из компаний не изготавливают устройства.

В результате реализации нашего проекта, появляется возможность экспериментировать с различными материалами, считающимися «экзотичными» в мире 3D печати, но реально зачастую валяющиеся прямо под ногами.

Устройство в сборе для изготовления пластиковой нити для печати на 3D принтере (FDM)

Рис.6. Устройство в сборе для изготовления пластиковой нити для печати на 3D принтере (FDM)

С каждым днем 3D печать становится все более популярна среди обычных людей, они покупают себе принтеры и сталкиваются с проблемой того что пластик очень дорогой, но наш проект решает эту проблему и позволяет продавать пластик рядовым пользователям 3D принтеров, а так же и другим учебным заведениям в разы дешевле, чем производители филамента. Поэтому у проекта большие перспективы развития.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector