Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула чугуна в химии

Формула чугуна в химии

ХИМИЯ МЕТАЛЛИЧЕСКИХ ЭЛЕМЕНТОВ

ПРОИЗВОДСТВО ЧУГУНА И СТАЛИ

Сырьем для получения железа является железные руды, основой которых могут быть оксид железа (III) (красный железняк) или феррит железа (II) F е3 O 4 (магнитный железняк, или магнетит, от чего происходит название явления магнетизма).

Чтобы получить металлическое железо, его надо восстановить. Учитывая огромные масштабы производства железа (в мире его производится более 500 млн. т ежегодно), восстановитель должен быть доступным и достаточно дешевым. Такими свойствами обладает углерод в виде кокса.

В современной технологии используется кокс, но непосредственным восстановителем выступает, в основном, оксид углерода (II):

Процесс восстановления проводят в специальных вертикальных печах, которые называются доменными, высотой до нескольких десятков метров и внутренним объемом (в крупных) до 5 тыс. м . Производительность доменных печей достигает 4 млн. т металла в год.

Рассмотрим основные химические реакции, протекающие в доменной печи.

При взаимодействии кокса с кислородом воздуха происходит экзотермическая реакция, которая обеспечивает энергией все другие процессы:

При этом развивается температура, выше 1600 °С, выше температуры плавления железа. Именно для интенсификации (ускорение) этой реакции подогревают воздух, который подается в домну, или обогащают его кислородом.

Далее углекислый газ восстанавливается избытком кокса:

и оксид углерода, образовавшийся восстанавливает железо.

Сталкиваясь с углеродом, жидкое железо растворяет его, в результате образуется сплав железа с достаточно большим содержанием углерода — чугун.

Основной примесью до оксидов железа в руде есть песок SiO 2 . Эта тугоплавкая вещество остается твердым при температурах, развиваются внутри доменной печи. Чтобы превратить его в более легкоплавкую состав — шлак, в шихту вводят известняк. Происходит реакция:

Жидкий силикат кальция, образовавшегося (вместе с другими неметаллическими примесями), является жидкостью с меньшей плотностью, чем чугун. В доменной печи, таким образом, образуется два жидких слоя, что дает возможность выводить из нее поочередно жидкие чугун и шлак.

Полученный в доменном процессе чугун — твердый, но хрупкий материал, из него изготавливают детали, которые не поддаются ударам в процессе эксплуатации (маховые колеса, станины и др.).

Значительно выше потребность народного хозяйства в стали. В нее и перерабатывается основное количество производимого чугуна.

Сталь отличается от чугуна меньшим содержанием углерода. В чугуне он составляет 6% , а в стали не превышает 2%. Для удаления избыточного углерода его окисляют, добавляя к чугуну железный лом (всегда ржавый) и продувая через расплавленный чугун или над ним воздух, обогащенный кислородом. Одновременно с удалением углерода в расплав вводят примеси других металлов для получения сталей различного назначения.

Формула чугуна в химии

Общие свойства чугуна

Основными составляющими чугуна являются железо и углероды. Свойства чугуна определяются структурой основной металлической массы, формой, количеством и расположением графитных включений. В равновесном состоянии структура железоуглеродистых сплавов определяется диаграммой. При изменении состава меняется:
эвтектическая температура ( 0 С).Т = 1135+5Si — 35P — 2Mn + 4Cr;
концентрация углерода в эвтектике (%) C = 4.3 — 0.3 (Si + P) — 0.04Ni — 0.07Cr;
эвтектоидная температура T. = 723 + 20 Si + 8Cr — 30Ni — 10 Cu — 20 Mn ;
концентрация углерода в эвтектоиде C = 0.8 — 0.15Si — 0.8Ni — 0.05 (Cr + Mn).

Положение критических точек определено при нагреве; при охлаждении точки располагаются ниже. С достаточной точностью для нелегированного чугуна большинства марок применимы упрощенные формулы:
концентрация углерода в эвтектике C = 4.3 — 0.3 (Si + P);
концентрация углерода в эвтектоиде C = 0.8 — 0.15Si.

Влияние элементов на структуру приведено в таблице 1. Коэффициенты, характеризирующие относительное графитизирующие действие, могут быть использованны только при содержаниях углерода (≈ 3%) и кремния (≈2 %).

Физические и механические свойства чугуна

Главнейшие физические и механические свойства структурных составляющих чугуна приведены в таблице 2, а типичные физические свойства чугуна — таблице 3. Приведенный в таблице 3 удельный вес может значительно изменяться в зависимости от количества связанного углерода и наличия пор. Удельный вес жидкого чугуна при температуре его плавления равен 7,0 ± 0,1 Г/см2; он понижается при увеличении содержания обычных примесей. Приведенный в таблице 3 обратимый коэффициент линейного расширения зависит от структуры чугуна.

Читайте так же:
Маркировка конвейерных лент расшифровка

Необратимое увеличение объема (рост) резко увеличивается при переходе через температуру фазовых превращений и доходит до 30%, но обычно не превосходит 3% при нагреве до 500оС. Увеличению роста благоприятствует графитообразующие элементы, а препятствуют — карбидообразующие элементы и нанесение на поверхность чугуна покрытый (гальванических, методом металлизации, эмалирования).

Тепловые свойства

Теплоемкость чугуна заданной структуры можно определить по правилу смешения, пользуясь данными таблице 2. Теплоемкость чугуна при температурах, превышающих фазовые превращения и до температуры плавления, может быть принята равной 0,18 кал /Го С, а превышающих температуру плавления — равной 0,23 ± 0,03 кал/Го С. Тепловой эффект при затвердевании равен 55 ± 5 кал/Г, а при перлитном превращении зависит от содержания перлита и доходит до 21,5 ± 1,5 кал/Г при эвтектоидной концентрации 0,8% Ссв:

Объемная теплоемкость, равная произведению удельной теплоемкости на удельный вес (кал/см 3 * о С), может быть принята для укрупненных расчетов: для твердого чугуна около 1 кал/см3* о С, а для жидкого — около 1,5 кал/см 3 * о С.

Теплопроводность не может быть определена по правилу смешения; приведенная в таблице 2 теплопроводность структурных составляющих по мере увеличения степени их дисперсности уменьшается. Типичная величина теплопроводности чугуна приведена в табл. 3. Влияние состава на теплопроводность сказывается главным образом через изменение степени графитизации. Теплопроводность ?-железа уменьшается при увеличении растворенных в нем примесей.

Теплопроводность жидкого чугуна равна ≈ кал/см*сек* о С.

Температуропроводность может быть принята при укрупненных расчетах для твердого чугуна числено равной его теплопроводности, а для жидкого чугуна равной 0,03 см 2 /сек.

Гидродинамические свойства

Динамическая вязкость приведена в таблице 4. Вязкость уменьшается при увеличении содержания марганца, а также при уменьшении содержания серы и неметаллических включений в зависимости от температурных условий, вязкость уменьшается приблизительно пропорционально отношению абсолютной температуры опыта к абсолютной температуре начала затвердевания. При переходе температуры начала затвердевания вязкость резко увеличивается.

Поверхностное натяжение для укрупненных расчетов может быть принято по таблице 3. Оно увеличивается с понижением содержания углерода и резко изменяется при наличии неметаллических включений.

Электрические свойства. При оценке электропроводности (электросопротивления) может быть использован закон Н.С. Курнакова. Ориентировочные значения электросопротивления структурных составляющих приведены в таблице 2, типового чугуна — в таблице 3. По ослабевающему действию на измельчение электросопротивления твердого раствора элементы могут быть расположены в ряд: кремний, марганец, хром, никель, кобальт.

Механические свойства

Статистические свойства. Предел прочности при растяжении чугуна может быть качественно оценен по его структуре в соответствии с данными, приведенными в таблице 2. Прочность структурных составляющих увеличивается по мере увеличения степени их дисперсности. Форма, количество, величина и распределение графитных включений оказывают на предел прочности большее влиянии, чем структура основной металлической массы. Наиболее заметное снижение прочности наблюдается при расположении графитных включений в виде цепочки, прерывающей сплошность металлической массы. Наибольшая прочность достигается при сфероидальной форме графита. Она достигается в чугуне без тепловой обработки при прибавлении в определенных магниях и церия. В таблице 5 приведены соотношения прочностных показателей чугуна. С повышением температуры испытания предел прочности остается практически постоянным до 400 о С (в интервале 100-200 о С имеет место снижения прочности, не превышающее 10-15%). При нагреве выше 400 о С наблюдается непрерывное падение предел прочности.

Пластические свойства зависят от структуры основной металлической массы (в соответствии с данными таблице 2), но еще в значительно большей степени — от формы графитных включений. При сфероидальной форме последних удлинении может достигать 30%. В обычном сером чугуне оно редко превышает десятые доли процента; в отожженном сером чугуне (ферритная структура) удлинение достигает

Упругие свойства зависят в основном от формы графита; они не изменяются при тепловой обработке чугуна, если при этом не изменилась форма графитных включений. При испытаниях на изгиб упругие деформации составляют 50-80% от общей деформации.

Ползучесть чугуна следует отличать от явлений роста. В нелегированном чугуне при нагреве до температуры свыше 550 о С остаточные деформации, связанные с явлением роста, превышают деформации, допустимые при оценке ползучести. При скорости ползучести 1 · 10 — 5 % в час за 1000ч нагрузка около 3 кГ/мм2 выдерживается нелегированным серым чугуном при температуре около 400 о С, а легированным чугуном при температуре до 500 о С. Увеличение сопротивления ползучести достигается у чугуна с аустенитной структурой и у чугуна с присадкой молибдена или с увеличенным содержанием никеля и хрома.

Читайте так же:
Лист с ромбическим рифлением гост 8568 77

Модуль упругости чугуна из-за наличия графитных включений имеет только относительное значение, поэтому правильнее считать его условной величиной. Модуль упругости чугуна не зависит от структуры основной металлической массы и определяется количеством и формой графитных включений: он падает с увеличением количества графитных включений и с отдалением их формы от глобулярной.

Динамические свойства. Ударная вязкость недостаточно верно отражает динамические свойства чугуна. Ударная вязкость увеличивается при увеличении содержания феррита и при уменьшении содержания графита, а также при приближении формы графитных включений к шаровидной. Для ориентировочных расчетов могут быть приняты следующие значения ан надрезанных образцов сечением 1,0 см 2 : и выраженные в долях от предела прочности, приведены в таблице 5. При асимметричном цикле нагружений предел выносливости проходит через максимум при увеличении сжимающих напряжений. Предел выносливости увеличивается при увеличении предела прочности и частоты нагружений.

Технологические свойства

Жидкотекучесть зависит от свойств металла и формы: она может быть определена разными методами. Чаще всего, жидкотекучесть, определяемая длиной L заполненной пробы, увеличивается при уменьшении вязкости, увеличении перегрева (при этом большое влияние жидкотекучесть оказывает перегрев выше температуры начала затвердевания), уменьшении интервала затвердевания (наибольшая жидкотекучесть наблюдается при эвтектическом составе) и зависит от скрытой теплоты плавления q и теплоемкости с, отнесенных к единице объема.

Химические свойства

Сопротивление коррозии зависит от структуры чугуна и от внешней среды (ее состав, температура, а также ее движения). По убывающему электродному потенциалу структурные составляющие чугуна могут быть расположены в такой последовательности: графит (наиболее стойкий) — цементит, фосфидная эвтектика — феррит. Разность потенциалов между ферритом и графитом составляет 0,56 в. Сопротивление коррозии уменьшается по мере увеличения степени дисперсности структурных составляющих. Однако чрезмерное уменьшение степени дисперсности графита также снижает сопротивление коррозии. Легирующие элементы влияют на сопротивление чугуна коррозии в соответствии с их влиянием на структуру. Повышенное сопротивление коррозии наблюдается у чугунных отливок с сохранившейся литейной коркой. Скорость коррозии по отношению к разным средам приведена в таблицах 7, 8 и 9.

Плотность чугуна

Углерод в составе чугуна может присутствовать в различных формах: в виде соединения состава Fe3C, называемого цементитом или в виде графита (пластинчатого, хлопьевидного или сферического), причем от формы графита в значительной мере зависят свойства чугуна. Он в очень малой степени способен к пластической деформации (в обычных условиях не поддается ковке), но обладает хорошими литейными свойствами. Чугун дешевле стали.

Выделяют белый, серый, высокопрочный и ковкий чугун. Плотность чугуна показана ниже:

(СЧ 10 ГОСТ 1412-85)

(ВЧ 35 ГОСТ 7293-85

(КЧ 70-2 ГОСТ 1215-79)

Белый чугун содержит весь углерод в виде цементите. Он обладает высокой твердостью, хрупок и поэтому имеет ограниченное применение. В основном он выплавляется для передела на сталь.

В сером чугуне углерод содержится главным образом в виде пластинок графита. Серый чугун (рис. 1) характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Кроме углерода, серый чугун содержит другие элементы. Важнейшие из них – это кремний и марганец. В большинстве марок серого чугуна содержание углерода лежит в пределах 2,4-3,8%, кремния 1-4% и марганца до 1,4%.

Серый чугун. Внешний вид и его плотность

Рис. 1. Серый чугун. Внешний вид.

Высокопрочный чугун получают присадкой к жидкому чугуну некоторых элементов, в частности магния, под влиянием которого графит при кристаллизации принимает сферическую форму. Сферический графит улучшает механические свойства чугуна. Из высокопрочного чугуна изготовляют коленчатые валы, крышки цилиндров, детали прокатных станов, прокатные валки, насосы, вентили.

Ковкий чугун получают длительным нагреванием отливок из белого чугуна. Его применяют для изготовления деталей, работающих при ударных и вибрационных нагрузках. Пластичность и прочность ковкого чугуна обусловлены тем, что углерод находится в нем в форме хлопьевидного графита.

Читайте так же:
Как настроить дисковую пилораму

Примеры решения задач

ЗаданиеВ результате сгорания кислородсодержащего органического соединения в избытке воздуха собрано 1,584 г углекислого газа и 0,972 мл воды. Плотность пара этого соединения по воздуху равна 1,5865. Выведите химическую формулу соединения, если она содержит два одноименных радикала.
РешениеСоставим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у» и «z» соответственно:

Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м.

Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H2O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m(C) = [1,584 / 44]/12 = 0,432 г;

Значение молярной массы органического вещества можно определить при помощи его плотности по воздуху:

Msubstance = 29 × 1,5862 = 46 г/моль.

Найдем число атомов углерода и водорода в соединении:

x:y = 0,432/12 :0,108/1;

x:y = 0,036 : 0,108 = 1: 3.

Значит простейшая формула углеводородного радикала этого соединения имеет вид CH3 и молярную массу 15 г/моль [M(CH) = Ar(C) + 3×Ar(H) = 12 + 3×1 = 12 + 3 = 15 г/моль]. Это означает, что на кислород приходится [46-15 = 31 г/моль], что невозможно.

Учитывая условие задачи про два одноименных радикала 2×М(CH3) = 2×15 = 30 г/моль, получаем, что на кислород приходится [46-30 = 16 г/моль], т.е. органическое кислородсодержащее соединение имеет вид CH3-O-CH3. Это ацетон (диметилкетон).

ЗаданиеПри сжигании органического вещества массой 10,5 г получили 16,8 г углекислого газа (н.у.) и 13,5 г воды. Плотность паров вещества по воздуху равна 2,9. Выведите молекулярную формулу вещества.
РешениеЗначение молярной массы органического вещества можно определить при помощи его плотности по воздуху:

Msubstance = 29 × 2,9 = 84,1 г/моль.

По массам углекислого газа и воды находим массы углерода и водорода, а также кислорода (по разнице между массой вещества и атомов углерода и водорода в нем). Однако, для начала рассчитаем их молярные массы. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr):

M(CO2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль;

M(H2O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль.

m (C) = 16,8 × 12/ 44 = 4,58 г.

m (H) = 13,5 × 2×1 / 18 = 1,5 г.

m(O) = msubstance – m (C) – m (H) = 10,5 – 4,58 – 1,5 = 4,42 г.

Обозначим количество моль элементов, входящих в состав соединения за «х» (углерод), «у» (водород) и «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z = 4,58/12 : 1,5/1 : 4,42/16;

x:y:z = 0,38 : 1,5: 0,276 = 1,38 : 5,43 : 1 = 3: 11 : 2.

Следовательно, простейшая формула органического соединения имеет вид C3H11O2 и молярную массу 46 г/моль [M(C3H11O2) = 3×Ar(C) + 11×Ar(H) +2×Ar(O) = 3×12+ 11×1 + 2×16= 36 + 11 + 32 = 79 г/моль].

Чтобы найти истинную формулу органического соединения найдем отношение полученных молярных масс:

Значит формула органического соединения будет иметь вид C3H11O2.

Железо

Железо расположено в 8 группе побочной подгруппе. У этого элемента 26 электронов, распределенных по 4 уровням. Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 . Для его атома характерно предзаполнение s-подуровня, поэтому в действительности формула следующая: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 . Железо является d-элементом. Благодаря этому, основные степени окисления железа: 0, +2, +3.

Физические свойства

Железо обладает всеми свойствами металлов:

— высокая температура плавления (1539 0 С).

Многие свойства находятся в оптимальных границах, поэтому железо часто используют при изготовлении различных изделий из металла. Для изменения определенных характеристик изготавливаются сплавы.

Основные сплавы железа

Металлы отличаются некоторыми параметрами. Например, одни обладают меньшей температурой плавления, другие большей прочностью, третьи – наиболее электропроводны. Иногда, для изменения свойств металла, его сплавляют с неметаллами (чаще всего, углерод). Самый распространенный сплав – сталь. Основу сплава составляет железо и углерод, кроме них могут добавляться различные металлы (легирующие компоненты), меняющие свойства сплава.

Таблица. Сплавы железа и их свойства

В качестве легирующих металлов стали могут использовать:

  • Cr – хром
  • Mo – молибден
  • Ni – никель
  • Si – кремний
  • Cu – медь
  • W – вольфрам
  • Al – алюминий
  • Mn – марганец
  • Ti – титан
  • Nb – ниобий
  • Co — кобальт

Легирующими компонентами чугуна являются неметаллы: марганец, кремний, сера, фосфор и некоторые металлы (алюминий, хром).

Нахождение железа в природе

В природе железо содержится в рудах. Они могут отличаться по содержанию железа и других примесей. К основным железным рудам относятся: магнетит, гематит, пирит.

Магнетит (магнитный железняк)

Химическая формула – FeO·Fe2O3. К основному оксиду могут примешиваться различные металлы и их оксиды. Зоны залежей магнетита проводят к формированию магнитных аномалий – участков Земли, на которых магнитные приборы указывают не на полюса, а на эту залежь. По этой причине использовать компасы и электронные приборы в этих зонах бесполезно.

Магнетит добывается в Челябинской области, на Кольском полуострове, Южном Урале, на Украине (гора Кривой рог).

Кратер добычи железной руды в Курской Магнитной Аномалии. Источник

Эта руда является основной для получения железа, так как его содержание в ней – 72,4%. В форме минерала используется в качестве утяжелителя глинистых растворов при бурении.

Пирит

Химическая формула — FeS2 (серный или железный колчедан). Может содержать примеси Mn, Ni, Co. Это минерал желтого цвета. Из-за внешнего сходства его часто путали с золотом, поэтому этот минерал часто называют золотом дураков. Хотя, самородное золото часто содержится в пирите в виде примесей и даже встраивается в го кристаллическую решетку.

Считается одним из самых распространенных сульфидов. Залежи пирита расположена во всех геотермальноактивных зонах, а также, в донных отложениях Черного моря.

При контакте с воздухом окисляется до лимонита (FeOOH·(Fe2O3·nH2O).

Пирит используется для получения серной кислоты, сероводорода или в строительном деле в качестве добавки в цемент.

Гематит

Химическая формула — Fe2O3. С давних времен минерал использовался для изготовления красок, ритуальных украшений и лекарственных препаратов. В настоящее время является основным источником получения чугуна.

  • Украинское (Кривбасс);
  • Михайловское (КМА);
  • Колатсельгские штольни;
  • Байкальское месторождение;
  • Альпийское;
  • Кутим.

Кроме минералов существует еще метеоритное железо. Это форма металла, попавшего на Землю из космоса. Во время прохождения через плотные слои атмосферы все примеси метеорита сгорают. Такое железо считается самым чистым. Оно практически не подвергается коррозии.

Способы получения

Основным способом получения железа является выделение из минеральных руд. Основным считается доменный процесс. Выделение железа производится в несколько стадий.

Доменная печь

Таблица. Стадии доменного процесса

Мартеновская печь

Для снижения содержания примесей в чугуне, полученный материал отправляют в Мартеновскую печь. Это плавильная установка. Процесс увеличения доли железа происходит в три этапа:

  • Плавление. Здесь образуется большое количество FeO.
  • Окисление. С+ FeO = Fe+CO. в результате реакции доля углерода снижается.
  • Раскисление. Окисление оставшегося FeO алюминием, ферромарганцем или ферросилицием.

Электрическая печь

Установка предназначена для получения легированной стали. Установка разогревается до высоких температур (цифра зависит от итогового сплава) и добавляется окислительный материал (нихром, фехраль и т.д.).

Химические свойства железа

Железо – элемент средней активности. Без нагревания многие реакции даже с сильными окислителями идут крайне медленно. При повышении температуры скорость взаимодействия увеличивается.

Взаимодействие с неметаллами

С неметаллами железо образует бинарные соединения – соли или оксиды.

Важная особенность: при взаимодействии с простыми веществами (кроме кислорода), железо проявляет степень окисления +3.

С кислородом образуется сразу два оксида со степенями окисления +2 и +3:

Взаимодействие с водой

Железо реагирует с парами воды в раскалённом состоянии:

Отношение железа к кислотам

С концентрированными кислотами железо не реагирует (пассивирует).

С растворами реакция идет также как и у других металлов – с образованием соли и водорода. Важно: при реакции со сложными соединениями железо проявляет степень окисления +2.

Реакция с солями

Железо реагирует с солями, металл которых пассивнее железа. Это значит, он должен располагаться левее в ряду активности металлов.

Смешанный оксид Fe3O4

Интересным соединение железа является смешанный оксид. Его особенность в том, что в одной кристаллической решетке есть сразу два иона железа — +2 и +3. Так как они образуют единый комплекс, часто их записывают как один оксид. На самом деле это кристаллогидрат двух оксидов: FeO⋅Fe2O3. Для него характерны следующие реакции:

  • Разложение: Fe3O4 → 3Fe + 2O2
  • Реакция с разбавленной кислотой: Fe3O4 + 4 H2SO4 → Fe2(SO4)3 + FeSO4 + 4 H2O
  • Окисление: 4Fe3O4 + 2O2 →6Fe2O3
  • Сплавление: Fe3O4 + 14NaOH → Na4FeO3 + 2Na5FeO4 + 7H2O
  • Конпропорционирование: Fe + Fe3O4 → 4FeO
  • Восстановление водородом до железа и воды.

Гидроксиды железа 2 и 3

Гидроксиды железа являются амфотерными соединениями, но с разной степенью основности.

Fe(OH)2

Гидроксид железа (II) – соединение коричневого или буро-оранжевого цвета.

Природный минерал с этой формулой называется амакинит.

Проявляет все химические свойства основных гидроксидов (реакции замещения с солями, кислотами).

Как амфотерное соединение способен реагировать со щелочами с образованием комплексных солей:

Гидроксид железа (II) является компонентом железо-никелевых аккумуляторов.

Fe(OH)3

Соединение красно-коричневого цвета.

Проявляет амфотерные свойства.

В природе встречается в составе минерала лимонита.

Проявляет химические свойства как и Fe(OH)2.

Применение железа

Железо является основным элементом черной металлургии, где используются сплавы этого вещества. Железные изделия необходимы в строительном, отделочном, электронном ремесле. В чистом виде оно применяется в химической промышленности, для изготовления аккумуляторов, для очистки сточных вод.

Чугун, ферросплавы

Чугун — железный нековкий сплав с содержанием С более 2%, примесей Mn, Si, S до 0,8; Р до 2,5. Обладает высокими литейными свойствами, определившими его основное использование в качестве конструкционного материала. Хорошо и производительно обрабатывается резанием, образуя высококачественную поверхность для узлов трения и неподвижных соединений.

Чугун поставляется в дальнейшее производство в отливках и чушках .

Чугун в чушках бывает литейным и передельным:

Литейный чугун предназначен для дальнейшего использования в чугунно-литейных цехах при производстве отливок.

В зависимости от назначения изготовляется марок Л1, Л2, Л3, Л4, Л5, Л6, а также рафинированный магнием марок ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6 .

Выплавляемый литейный чугун марок Л1-Л6 соответствует высокому качеству. Качество литья из чугуна отличается гарантированной стабильностью механических свойств согласно ГОСТ 1412-85 PDF , отсутствием в структуре литья свободно выделившегося цементита, хорошей обрабатываемостью и меньшей склонностью к кромочному отделу. Чугун гарантирован по своему химическому составу (содержание марганца, фосфора, серы), так как при его производстве не применяется агломерат, а только кокс.

Передельный чушковый чугун предназначен для дальнейшего передела в сталь или переплавки в чугунолитейных цехах при производстве отливок.

В зависимости от назначения передельный чугун изготовляют:

Ферросплавы.

Ферросплав — это промежуточный сплав легирующих сталь компонентов с железом, применяемый для раскисления и легирования стали и сплавов, легирования и модифицирования чугуна.

Ферросилиций — электропечной сплав кремния с железом. Изготовляется 11 марок согласно ГОСТ 1415-93 PDF

Ферросилиций используют в качестве раскисляющих и легирующих добавок для выплавки электротехнических, рессорно-пружинных, коррозийно- и жаростойких сталей, а также конструкционных и инструментальных сталей, легирования и модифицирования чугуна.

Поверхность чушек и кусков ферросилиция не должна иметь резко выраженных включений шлака и других инородных материалов. Допускаются отдельные включения приварившегося песка, следы других противопригарочных материалов и графита.

Ферросилиций поставляют в кусках массой не более 25кг или в чушках массой не более 45кг. Дробленый ферросилиций поставляют по классам крупности в соответствии с таблицей.

Ферросилиций марки ФС92 любого класса крупности и ферросилиций остальных марок 5-7 классов крупности транспортируют упакованным в стальные барабаны или в специализированных контейнерах.

Ферросилиций других марок в кусках массой до 25кг, в чушках и 1-4 классов крупности транспортируют в специализированных контейнерах или навалом.

Ферротитан — ферросплав, содержащий до 35 или более 60% Ti, 1-7% Al, 1-4,5% Si, до 3% Cu (остальное Fe и примеси); получают внепечным алюминотермическим способом из ильменитового концентрата и титановых отходов (низкопроцентный ферротитан) или сплавлением в электрической печи железных и титановых отходов (высокопроцентный ферротитан).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector