Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Повышающие преобразователи напряжения 12-220v своими руками

Повышающие преобразователи напряжения 12-220v своими руками

Повышающие преобразователи напряжения-01

Повышающие преобразователи напряжения 12-220v: в этой статье описывается как сделать самостоятельно преобразователь напряжения с 12v постоянного тока в 220v переменного тока с использованием небольшого количества компонентов. В этом проекте задействована функциональная микросхема К561ТМ2 с двух контактным D-триггером.

Повышающие преобразователи напряжения: где их можно использовать

Сфера применения такого устройства довольно широка: например, когда в доме отключили свет, а вам нужно обязательно посмотреть по телевизору футбольный матч вашей любимой команды. Или подключить зарядку телефона либо ноутбука, можно выполнять пайку каких либо электронных схем и т.д. Для этого вам потребуется всего лишь автомобильный аккумулятор и повышающий преобразователь с 12 вольт до 220 вольт переменного напряжения. Схема такого прибора приведена ниже.

Схема инвертора

Установленная в схеме данного устройства микросхема К561ТМ2 выполняет функции основного компонента. Генератор частоты 100 Гц представляет собой электронный узел обозначенный DD1.1, а частотный делитель — DD1.2. Для обеспечения нормальной работы выходного каскада собран усилитель по току, который выполнен на составных биполярных транзисторах КТ973 (VT1-VT2). Кроме этого, транзисторы Дарлингтона выполняют функции шунтирования обмоток трансформатора.

Компоненты используемые в повышающем преобразователе напряжения

Установленные по схеме биполярные транзисторы предвыходного каскада КТ973 могут быть заменены на BD140, также и мощные выходные транзисторы КТ805 можно менять на эпитаксиальные кремниевые приборы TIP41. Трансформатор силовой цепи подбирается в зависимости от предполагаемой мощности преобразователя. Представленное здесь устройство обладает мощностью в пределах 32 Вт, этого вполне хватит, чтобы пользоваться паяльником рассчитанным на 25W.

Что касается силового трансформатора, то может быть использован практически любой. Например в моем варианте задействован транс марки ТС-40-1. Естественно, две его штатные вторичные обмотки я перемотал на нужное мне напряжение. Каждая из этих обмоток выполняется двумя эмаль-проводами имеющим сечение 0.17 мм.кв каждый. Соответственно получится четыре слоя. Далее, конец 1-ой обмотки нужно соединить с концом 2-ой обмотки. Как правильно сделать расчет трансформатора с помощью специальной программы, можно посмотреть —> Здесь.

Таким образом вы получите вывод средней точки трансформатора, который пойдет на корпус. Но здесь нужно четко себе представлять, что на транс поступают импульсные сигналы прямоугольной формы. Нужно понимать, что на трансформатор подаются прямоугольные импульсы. Чтобы в выходной цепи трансформатора получить нормальный синусоидальный сигнал, для этого нужно точно выбирать конденсатор C5 путем подбора.

Если у вас имеется в наличии осциллограф, то отследить синусу на выходе лучше будет с его помощью. Вобщем выходной синусоидальный сигнал должен быть как можно больше соответствовать чистой синусе. Хотя при практическом изготовлении преобразователя выполнять такие подборы не обязательно, так как современные электронные приборы использующие импульсные блоки питания могут работать с напряжением как прямоугольной формы, так и с постоянным током.

Представленная здесь схема достаточна универсальная, то есть есть возможность устанавливать транзисторы с более высокой мощностью, чем указано в оригинальном варианте. Но тогда придется увеличить мощность и силового трансформатора, а также аккумуляторную батарею с достаточной емкостью. После такой модернизации инвертора, его суммарная мощность значительно увеличится.

В моем случае был применена аккумуляторная батарея собранная из шести литий-ионных (LI-ION) элементов, имеющая суммарную емкость 5200 мА/ч. Такого набора емкостей вполне хватит для работы с паяльником в течении порядка трех часов. Для корректной работы устройства и равномерного заряда, применяется плата балансировки литиевых аккумуляторов. Данный преобразователь имеет ток холостого хода 0.67A.

Тест платы балансировки аккумуляторов 18650

В процессе доработки прибора я решил добавить в схему коннектор USB, как дополнительную опцию, чтобы можно было заряжать мобильные устройства. Напряжение 5v на этот разъем я подал с инвертора DC-DC.

Читайте так же:
Сварку для проводов сделать своими руками

Все задействованные компоненты размещены в металлическом корпусе взятого от старого компьютерного блока питания. На фронтальной панели установлены электрическая розетка, переключатели напряжения и рода работ (Заряд-Работа). Рядом размещены: светодиодный индикатор, отображающий состояние заряда аккумулятора.

Готовый инвертор
Повышающие преобразователи напряжения-3
Повышающие преобразователи напряжения-4

Аппарат получился надежный, неоднократно использовал его, когда в доме вырубали электроэнергию. Если к нему подключать светодиодные светильники либо энергосберегающие лампы, то прибор сможет работать продолжительное время.

Преобразователь напряжения 12 220 на мультивибраторе

Здравствуйте. Сегодня хочу поделиться с вами одним очень простым и очень популярным преобразователем на мультивибраторе.Такой же мультивибратор как на мигалке. Тоже самое в принципи Схема очень проста и не требует особых умений и усилий, поэтому эта схема приглянулась для первого теста преобразователей.

Схема преобразователя напряжения 12 220 на мультивибраторе

Схема преобразователя напряжения 12 220 на мультивибраторе

Как видно схеме нарисован симметричный мультивибратор работающий с частотой 100Гц. На выходы навешаны полевые n канальные транзисторы, которые раскачивают трансформатор с двумя симметричными обмотками по 13,5В, Это в моем случае. Для нормальной работы трансформатор должен иметь обмотки 10,5-11,5В.

Осциллограмма работы симметричного мультивибратора

На затворах полевых транзисторов мультивибратор создает прямоугольные импульсы, а не синусоиду, как многие хвастаются в интернете. Из-за того что на выходе прямоугольник, не все можно подключать к преобразователю. Этим преобразователем можно питать лампы(эконом и накаливания), технику с импульсными блоками питания(телевизоры,ПК,зарядки телефонов и т.д.) а так же все где синус не обязателен. К примеру асинхронный двигатель таким преобразователем не запитаеш, а вот коллекторный двигатель должен работать.

О сборке и настройке преобразователя

Схема преобразователя собрана из того что было. Пленочные конденсаторы по 1мкФ и транзисторы КТ805ИМ снятые с советских телевизоров, полевые транзисторы IRF630 сняты с платы монитора с ЭЛТ и резисторы тоже с распайки. Короче собрал все из хлама на печатной плате, которая год уже пылилась никак руки не доходили распаять.
Нужен проект печатной платы?? Пройдите сюда и следуйте инструкции

Подключил преобразователь к лабораторному блоку питания 12,6В, ток ограничил на 0,5А. Схема запустилась, но холостой ток просился выше, а из трансформатора доносились посторонние звуки. Тогда к частота задающим резисторам подключил переменный резистор 10к и подрегулировал частоту к 50Гц(Как выставить частоту читайте снизу). Замерил сопротивление переменного резистора, заменил его на постоянный, номиналом 2,2к . Общее сопротивление 12,2К

После подбора частоты ток потребления установился 250мА , на выходе трансформатора 207В.

Выходное напряжение 207В преобразователя на мультивибраторе

Ток холостого хода преобразователя на мультивибраторе

Подключил к преобразователю эконом лампу на 60ВТ, подключил к преобразователю телевизор.
После 2 часов нагрузки на лампу слегка нагрелся трансформатор и и терпимо теплый радиатор. Схемой доволен в общем

Можете так же посмотреть видео как работает преобразователь напряжения 12В-220В на мультивибраторе

P.s. Кстати в интернете полно схем, где частота задающие R разные, C постоянная, а частота одинаковая. К примеру С-4,7мкФ а R- и 14к и 22к и 4,7к.
Ну как такое может быть. Пишут схемы, делятся ими, а при таких номиналах схема не запустится.

Как настроить частоту 50Гц? Если есть слух, можно в сетевую розетку включить любой трансформатор и добиться что бы гул от сетевого трансформатора и трансформатора преобразователя звучал в унисон.Этот момент невозможно пропустить, этот гул должен усилиться конкретно.

Резонансный инвертор, преобразователь напряжения повышающий. Схема, конструкция, описание. Сделать самому, своими руками

Обычно я придерживаюсь принципа, что чем меньше в схеме деталей, чем она проще, тем она надежнее. Но данный случай — исключение. Те, кто проектировал и собирал схемы мощных повышающих преобразователей напряжения с 12 / 24 вольт на 300 (например), знают, что классические подходы тут работают плохо. Слишком велики токи в низковольтных цепях. Использование схем с ШИМ приводит к возникновению коммутационных потерь, которые моментально перегревают и выводят из строя силовые транзисторы. Внутреннее сопротивление силовых ключей является серьезной помехой применению схем с конструктивным ограничением коммутационных потерь, таких как мостовые и полумостовые схемы.

Читайте так же:
Габион шар своими руками

Приведенная схема основана на разделении функции повышения напряжения и его стабилизации в разных каскадах. При таком подходе мы получаем возможность самый проблемный блок — инвертор — заставить работать в резонансном режиме при минимальных потерях на силовых ключах и выпрямительном мосте в высоковольтной части схемы. А стабилизация выходного напряжения осуществляется в блоке СТ, который собран по простой повышающей топологии. Сейчас его схема не приводится, о нем будет отдельная статья. С его выхода снимается стабильное нужное напряжение.

Принципиальная схема резонансного преобразователя напряжения

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Ф — фильтр импульсных помех. Он снижает радиочастотные помехи от работы устройства. Так как инвертор работает в резонансном режиме, то эти помехи и так невелики. Можно попробовать использовать его без фильтра. Об устройстве и расчете таких фильтров будет отдельная статья.

Конденсатор C1 — Батарея конденсаторов общей емкостью 88 000 мкФ. Четыре электролитических конденсатора по 22 000 мкФ 25 В и керамический конденсатор на 4 мкФ, соединенные параллельно. Соединение надо выполнять так, чтобы ток равномерно распределялся между конденсаторами. Длины проводников к каждому из них должны быть равны.

Конденсатор C2 — Электролитический конденсатор 1 000 мкФ 25 В.

Микросхема D2 — Интегральный стабилизатор напряжения на 10 вольт с малым внутренним падением напряжения.

Диод VD1 1N4001 — например, или любой другой выпрямительный маломощный диод на 25 вольт, защищающий стабилизатор от обратного напряжения при выключении питания, которое возникает за счет разряда конденсатора C2.

Конденсатор C3 — 0.1 мкФ керамический конденсатор.

Конденсатор C4 — 1 — 2 нФ керамический конденсатор. Подбираем для получения нужной частоты.

Резистор R1 — Подстроечный резистор 100 кОм.

Микросхема D1 — ШИМ контроллер (1156ЕУ2 или UC1825, или UC2825, или UC3825). Мы его используем немного нестандартно — в качестве формирователя сигнала и драйвера силовых ключей.

Диоды VD2, VD3, VD4, VD4 — Диоды Шоттки. 1N5818 или 1N5819. Эти диоды установлены, так как эксперименты показали, что в некоторых критических случаях, вероятно, за счет внутренних емкостей силовых полевых транзисторов на выводах 14 и 11 контроллера возникает напряжение выше напряжения питания или ниже нуля, что приводит к сгоранию микросхемы. Для повышения надежности установлены эти диоды, шунтирующие выбросы на шины питания и земли.

Резисторы R2, R4 — 20 Ом 1 Вт. Резисторы R3, R5 — 100 Ом 1 Вт.

Диоды VD6, VD7 — Диоды Шоттки 1N5822

Конденсатор C5 — Нужно подбирать под индуктивность рассеивания трансформатора. Можно начать с 0.1 мкФ 2000 В. В результате резонанса на этом конденсаторе может возникать напряжение, в разы превосходящее выходное. Так что по напряжению лучше иметь запас.

Трансформатор — Для 12-вольтового варианта первичная обмотка содержит две половинки по 3 витка, вторичная — 64 витка. Для 24-вольтового варианта первичная обмотка содержит две половинки по 4 витка, вторичная — 42 витка. Подробнее о его изготовлении читайте далее.

Мост М — мост из мощных быстродействующих диодов на 600 В. Мы собираем этот мост на диодах 30EPF06.

Читайте так же:
Коптилка горячего копчения своими руками видео

Конденсатор C6 — Электролитический конденсатор 100 мкФ 400 В.

Полевые транзисторы VT1, VT2 — IRFP2907

1 2 3

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Приветствую! Как я понял со схемы, все лимитеры ИС отключены. Схема совсем не защищена от перегрузок? Как схема реагирует на перегрузки по току в нагрузке? Заранее благодарю за ответ. Читать ответ.

Здравствуйте! для питания Катушки Теслы использую блокинг генератор на строчнике. Но транзистора хватает максимум на 30 сек сгорает даже при радиаторе 300кв.см и куллере,Что можно предпринять для того чтоб транзисторы не грелись (хотя ясно что они будут так как первичка 8 витков 4кв.мм) или посоветуете другую схему использовать? Читать ответ.

Добрый день! Продумываю применение Вашей схемы для ситуации построения мощного DC/DC (Uвх.=12В / Uвых.=22-24в), Iн — 100-150А. Если правильно понял, изменится количество витков вторичной обмотки и будет = числу витков для случая с низковольтным входом = 24В? Так как ток в нагрузке нужен 100-150А при U = 24В, необходимо параллельное соединение блоков по вышеприведенным реком Читать ответ.

Здравствуйте! Обращаюсь к вам с необычной просьбой: не могли бы Вы помочь разобраться с функциональной схемой и подобрать что-нибудь из Ваших практических? (Вообще-то это диплом студентки-вечерницы) С уважением, Валентин Читать ответ.

Цитата: ‘В итоге транзисторы закрываются в такие моменты времени, когда ток равен нулю’. Насколько я помню физику этой галактики, ток будет равен нулю в одном и только в одном случае! Если напряжение тоже будет равно нулю! То есть глядя на вашу схему принцип работы такой: Заряжаем С1 (90 000мкф О_о. ), включается допустим верхний по схеме ключ. и ждем пока напряжение н Читать ответ.

Здравствуйте! Для увеличения мощности Вы советуете набирать блоками, но если сделать один блок управления, один трансформатор на максимальную мощность, а первичку разделить на две секции и каждую запитать своим транзистором, поставив при этом переключатель на одну пару транзисторов по затвору, получив при этом мощность Р из Р/2 Читать ответ.

Здравствуйте! Я хотел бы спросить, у вас нет печатной платы в программе Sprint-Layout6. Если есть, сбросьте, пожалуйста. И насчет обмоток трансформатора, не могли бы нарисовать, как будут укладываться обмотки. И если можно посмотреть на фото готового трансформатора. Читать ответ.

Здравствуйте! Не подскажете, при входном питании 29-30 вольт надо пересчитывать трансформатор или подойдет вариант 24в? И еще вопрос — сердечники нашлись у меня без зазора, материал не известен — это принципиально? . Читать ответ.

Здравствуйте. После удачного повторения генератора синуса на 40кГц, постепенно подбираюсь к повторению резонансного инвертора с генератором синуса. На данный момент идет подбор деталей. Начали возникать вопросы. На входе инвертора стоит фильтр. Нужен ли он вообще, при питании от АКБ? При силе тока, к примеру 100А провод необходим приблизительно диаметром 4.5мм. Это ж какое кол Читать ответ.

Здравствуйте! Нагрузка лампочка 25Вт, надеюсь, что получил резонанс. Высылаю Вам картинки, посмотрите. Вопрос по схеме ‘Импульсный преобразователь, источник синусоидального напряжения. ‘ в место UC3823 можно поставить UC3825? Как изменения в схеме. Читать ответ.

Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная.
Расчет и применение колебательных контуров. Явление резонанса. Последовательные .

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида.
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при.

Повышающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р.

Читайте так же:
Что сделать из стиральной машины своими руками

Преобразователь однофазного напряжения в трехфазное. Принцип действия.
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Расчет силового резонансного фильтра. Рассчитать онлайн, он-лайн, on-l.
Как получить синусоидальное напряжение на выходе при входном напряжении сложной .

Инвертор 12/

Инвертор предназначен для организации резервного питания от автомобильной бортовой сети или альтернативного источника постоянного тока вроде солнечной батареи (при условии наличия промежуточного аккумулятора и зарядно-питающего устройства, обеспечивающего стабильное напряжение зарядки данного аккумулятора).

Светодиодные драйверы MEAN WELL для систем внутреннего освещения

Основными отличиями данной схемы инвертора от многих вариантов, предложенных в различных радиолюбительских изданиях являются:

  1. Использование готового низкочастотного силового трансформатора с одной низковольтной обмоткой и без отводов от её середины. Что наиболее выгодно с точки зрения выбора готового трансформатора.
  2. Ступенчатое импульсное напряжение, поступающее на низковольтную обмотку трансформатора создает на высоковольтной обмотке напряжение наиболее близкое по форме к синусоиде.

Принципиальная схема показана на Рисунке 1. На Рисунке 2 приводится график формирования выходного напряжения. На низковольтную обмотку трансформатора поступает ступенчатое напряжение, форма которого видна на Рисунке 2. Это напряжение возбуждает обмотку трансформатора и на индуктивности его высоковольтной обмотки происходит интеграция данного ступенчатого напряжения, в напряжение по форме наиболее близкое к синусоидальному.

Рисунок 2.

Для того чтобы в инверторе можно было использовать трансформатор с одной низковольтной обмоткой, его выходной каскад выполнен по мостовой двухтактной схеме. Это позволяет отказаться от отвода в низковольтной обмотке, но ведет к двухкратному увеличению числа выходных транзисторов.

Выходной каскад состоит из двух двухтакных выходных каскадов на разноструктурных мощных ключевых полевых транзисторах с низким сопротивлением открытого канала. Для увеличения мощности каждое плечо составлено из двух полевых транзисторах, включенных параллельно. Можно еще более увеличить мощность, используя большее число включенных параллельно полевых транзисторов.

Мощные ключевые МДП-транзисторы с минимальным сопротивлением открытого канала, статически, обладают бесконечным сопротивлением затвора, поскольку затвор у них изолированный, но динамически играет большую роль емкость затвора, на зарядку которой в процессе переключения транзистора может возникать существенный импульс тока, способный повредить выходы логических микросхем, при непосредственном управлении. Поэтому для управления полевыми транзисторами используются промежутоные ключи на биполярных транзисторах VT1-VT3 и VT12-VT14.

Транзистор VT1 управляет транзисторами VT4 и VT5. Это Р-канальные полевые транзисторы, поэтому для их открывания требуется подача на затвор напряжения, отрицательного относительно истока. Между затвором и истоком включен резистор R3, уменьшающий сопротивление цепи затвора и обеспечивающий разрядку емкости затвора. Транзистор VT1 при открывании подает на затвор отрицательное напряжение (относительно плюса питания). Так образом, при подаче напряжения высокого логического уровня через R2 на базу транзистора VT1 происходит открывание транзисторов VT4 и VT5.

Транзисторы VT6 и VT7 — N-канальные, поэтому для их открывания требуется подача на затвор положительного, относительно общего минуса, напряжения. При этом, открывать их надо так же, — логической единицей. По этому на транзисторах VT2 и VT3 сделан каскад, управляющий транзисторами VT6 и VT7, но не инвертирующий сигнал управления. Так образом, при подаче напряжения высокого логического уровня через R4 на базу транзистора VT2 происходит открывание транзисторов VT6 и VT7.

Аналогичным образом происходит управление и полевыми транзисторами VT8-VT11 второго плеча мостового выходного каскада. Транзистор VT12 при открывании подает на затворы VT8 и VT9 отрицательное напряжение (относительно плюса питания). Так образом, при подаче напряжения высокого логического уровня через R7 на базу транзистора VT12 происходит открывание транзисторов VT8 и VT9.

Читайте так же:
Как сделать колун из топора своими руками

На транзисторах VT13 и VT14 сделан каскад, управляющий транзисторами VT10 и VT11, но не инвертирующий сигнал управления. Таким образом, при подаче напряжения высокого логического уровня через R9 на базу транзистора VT14 происходит открывание транзисторов VT10 и VT11.

Генератор управляющих импульсов выполнен на цифровых микросхемах D1 и D2. Элементы D1.1 и D1.2 микросхемы D1 образуют мультивибратор, генерирующий импульсы частотой 200 Гц (частота в четыре раза выше частоты выходного переменного напряжения, снимаемого с высоковольтной вторичной обмотки трансформатора Т1). Частота устанавливается с помощью конденсатора С1 и резистора R1.

Импульсы 200 Гц с выхода D1.2 поступают на счетный вход счетчика D2 на микросхеме C4017. Это десятичный счетчик, состояния выходов которого изменяются последовательно согласно числу входных импульсов. Счет счетчика ограничен соединением выводов 15 и 10. При поступлении на его вход 4-го импульса единица с вывода 10 поступает на вывод 15 и сбрасывает счетчик в нулевое положение.

И так, с приходом первого (после сброса) импульса на вход счетчика D2, на его выходе «1» (вывод 2) появляется логическая единица. Она поступает на базы транзисторов VT1 и VT14. В результате открываются транзисторы VT4-VT5 и VT10-VT11. Левый, по схеме, конец низковольтной обмотки трансформатора Т1 соединяется с плюсом питающего напряжения, а правый (по схеме) — с минусом.

Затем на вход D2 приходит второй импульс и на его выходе «2» устанавливается единица. При этом на всех остальных выходах — ноль. Соответственно все транзисторы закрыты, на обмотке трансформатора нуль напряжения.

С приходом третьего импульса появляется логическая единица на выводе 7 D2. Это приводит к открыванию транзисторов VT6-VT9. Теперь правый (по схеме) конец низковольтной обмотки трансформатора Т1 подключен к плюсу питания, а левый (по схеме) к минусу.

С четвертым импульсом счетчик возвращается в нулевое положение и все транзисторы закрыты. На обмотке трансформатора нуль напряжения.

Далее, все повторяется.

Фактическая выходная мощность, конечно же, в основном зависит от мощности используемого трансформатора. Это должен быть силовой трансформатор на 50 Гц, причем его низковольтная обмотка на 12 В (или 24 В) должна быть основной, той самой на которой и выдается вся выходная мощность трансформатора.

Фактически, при указанных на схеме транзисторах мощность может быть до 700 Вт. Полевые транзисторы должны быть на радиаторах, обеспечивающих эффективный теплоотвод.

Мощность можно существенно увеличить, пропорционально увеличив количество параллельно включенных полевых транзисторов. Здесь, практически нет ограничений, разумеется и трансформатор потребуется соответствующий.

Если мощность не планируется более 200 Вт можно выходной каскад сделать на одиночных транзисторах.

Если синусоидальность выходного напряжения не имеет существенного значения можно сделать инвертор по упрощенной схеме. На Рисунке 3 показана схема инвертора мощностью 150 Вт с выходным напряжением, по форме менее похожим на синусоиду. Тем не менее, такой инвертор можно использовать для питания многих электроприборов и даже электронных приборов с импульсными источниками питания.

Рисунок 3.

Упрощение коснулось формирователя импульсов, — теперь это обычный мультивибратор, генерирующий противофазные импульсы частотой 50 Гц на выходах D1.3 и D1.4. На одном такте единица на выходе D1.3 и ноль на выходе D1.4. Соответственно, открываются транзисторы VT3 и VT7. На другом такте единица на выходе D1.4 и ноль на выходе D1.3. Открываются транзисторы VT5 и VT8.

Проще стал и выходной каскад, — теперь меньше биполярных транзисторов. Полевых то же меньше, но при желании повысить мощность их можно включить параллельно по два или три.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector