Alp22.ru

Промышленное строительство
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Площадь круга

Площадь круга

Круг

Круг – это плоская фигура, которая представляет собой множество точек равноудаленных от центра. Все они находятся на одинаковом расстоянии и образуют собой окружность.

Отрезок, который соединяет центр круга с точками его окружности, называется радиусом. В каждой окружности все радиусы равны между собой. Прямая, соединяющая две точки на окружности и проходящая через центр называется диаметром. Формула площади круга рассчитывается с помощью математической константы – числа π..

Это интересно: Число π. представляет собой соотношение длины окружности к длине ее диаметра и является постоянной величиной. Значение π = 3,1415926 получило применение после работ Л. Эйлера в 1737 г.

Площадь окружности можно вычислить через константу π. и радиус окружности. Формула площади круга через радиус выглядит так:

S=<pi data-lazy-src=

S=pi<(l/2pi) data-lazy-src=

Очень легко можно найти площадь круга описанного вокруг квадрата.

Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: d^2=2a^2отсюда d=sqrt<2a^2 data-lazy-src=

Полученный результат и будет искомой площадью многожильного проводника.

Дополнительная информация: Для вычисления площади сечения проводника необходимо, в первую очередь, измерить его диаметр, и сделать это лучше всего микрометром, штангенциркулем или, в крайнем случае, высокоточной инженерной линейкой. Так как микрометр – редкость в наборе инструментов электрика, то этот способ мы упустим и остановимся на штангенциркуле и линейке.

Штангенциркуль

Штангенциркуль — высокоточный измерительный инструмент, при помощи которого можно определить линейные размеры любого предмета, диаметры круглых изделий, а также глубину сквозных и глухих отверстий и выемок. Такой инструмент должен быть у каждого домашнего мастера, стоит он не дорого и при правильном обращении может прослужить не одно десятилетие.

Штангенциркули подразделяются на следующие виды:

  • Нониусные — имеют классическую конструкцию и высокоточную измерительную шкалу, которая позволяет измерять предметы с точностью до 0.1 – 0.05 мм.
  • Со стрелочным отображением результатов измерений — очень удобный для снятия точных показаний инструмент, но его главным недостатком является повышенная хрупкость.
  • С электронной индикацией результатов — относительно новая разработка, предназначенная для получения максимальной точности и удобного снятия показаний измерений.

Рассмотрим самый распространенный вид штангенциркуля — нониусный. Из таких инструментов наибольшее распространение получили два вида:

  • ШЦ-I с точностью измерений 0,1 мм, такой инструмент есть практически у каждого слесаря.
  • ШЦ-II с точностью измерений 0,05 мм, этот штангенциркуль предпочтительнее, так как в результате работы он выдаёт меньшую погрешность.

Для правильного измерения диаметра достаточно оголить сердечник кабеля путём снятия изоляция, после чего прижать раздвижные губки инструмента к его поверхности. Риска на подвижной части штангенциркуля совпадёт с показателем на шкале, который и будет являться диаметром.

Карандаш + линейка

Если под рукой нет точных измерительных инструментов, а определить диаметр провода необходимо в настоящий момент, можно воспользоваться старым проверенным способом. Картинка 5. Метод карандаша.

Для данного способа понадобятся круглый карандаш и линейка. Суть метода состоит в следующем алгоритме:

  • Прежде всего необходимо отрезать кусок провода и очистить его от изоляции.
  • Далее проволока из металлического сердечника плотно наматывается на карандаш, причём, минимальное количество витков должно быть не меньше 15. Здесь все зависит от толщины провода, и чем он тоньше, тем больше витков необходимо намотать.
  • Проводятся вычисления по формуле, приведённой на картинке 6.

Обратите внимание! Для получения точного результата следует наматывать провод на карандаш как можно плотнее. Для этого перед наматыванием его необходимо тщательно выровнять в местах перегибов и образования петель.

Окружность и круг — в чём отличие?

Часто понятия круг и окружность путают, хотя это разные вещи. Окружность — это замкнутая линия, а круг — это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко — это окружности, а монета или вкусный блин — это круги.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.

Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Уравнение окружности

1. Уравнение окружности с радиусом r и центром в начале декартовой системы координат: r2 = x2 + y2

2. Уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

r2 = (x – a)2 + (y – b)2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Таблица с формулами площади круга

Радиус круга r
Диаметр

– это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно
разделить
его обратно на два.
Длина окружности
представляет собой удвоенное произведение радиуса и числа π:
P=2πr
, обратным методом получаем, что
радиус равен длине окружности
, разделенной на его множитель.

Длина окружности круга

Множество точек удаленных от центра круга на расстояние, не превышающее радиус круга, называется кругом. Отношение длины любой окружности C

к ее диаметру
d
всегда будет равно одному и тому же числу. Это число – всем известное число
π
(«пи»), которое примерно равно 3,14. Так же, справедлива формула определения числа
π
, как отношение длины окружности
C
к двум ее радиусам
r
. Исходя из этого, выводится формула длины окружности
C
, которая равна произведения числа
π
и диаметра
d
окружности или 2-м ее радиусам
r
.

Для примера

решим простую задачу, где нужно найти длину окружности, у которой известен радиус
r
=2 см.

Подставляем известные данные в формулу длины окружности и получаем, что длина окружности примерно равна 12,56 см.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь круга описанного вокруг квадрата

Очень легко можно найти площадь круга описанного вокруг квадрата.
Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда . После того, как найдем диагональ – мы сможем рассчитать радиус: . И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата. Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности. Для начала рассчитаем длину диагонали d. Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Площадь поперечного сечения

При решении заданий сопротивления материалов в расчетные формулы вводят величины, которые определяют формулу и размеры поперечных сечений, они называются геометрическими характеристиками плоских сечений. Первой такой величиной стоит считать площадь сечения. Рассчитать площадь поперечного сечения можно даже ствола дерева, ведь оно по форме похоже на эллипс или круг. Согласно формуле, площадь поперечного сечения круга, возможно, рассчитать достаточно точно по формуле. Площадь сечения круга или шара можно найти по формуле:

Основные свойства касательных к окружности

1. Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.

2. Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

  • https://tokar.guru/hochu-vse-znat/raschet-ploschadi-poperechnogo-secheniya-kruga.html
  • https://mnogoformul.ru/formuly-ploshhadi-kruga-i-raschet-onlayn
  • https://www.calc.ru/ploshchad-kruga.html
  • https://ru.onlinemschool.com/math/formula/circle/
  • https://allcalc.ru/node/18
  • https://minus-procentov-online.ru/krug/diametr/
  • https://doza.pro/art/math/geometry/area-circle
  • https://zen.yandex.ru/media/studystudent/dlina-okrujnosti-i-ploscad-kruga-formuly-i-primery-5e9d7c122517bd2ed0b40460
  • https://2mb.ru/matematika/geometriya/ploshhad-kruga/

Чему равна площадь

Чему равна площадь поперечного сечения проводника – главный вопрос монтажника. Данный показатель является величиной, которая зависит от формы перпендикулярного среза геометрического тела. Проще всего определить площадь квадрата или прямоугольника, для чего достаточно перемножить между собой длину на ширину. Еще в Древней Греции научились рассчитывать площадь практически любой фигуры. Как правило, большинство проводов имеют круглую форму сечения, которую вычислить несложно по формуле или воспользовавшись справочной таблицей. Для этого нужно знать только диаметр или радиус жилы проводника.

Обратите внимание! Существуют кабели большого сечения, в составе которых расположены секторные провода. Но в конечном итоге, сердечники таких изделий рассчитываются исходя из общего приведённого диаметра всех металлических элементов в пучке. Для определения площади сечения каждой жилы необходимо общий показатель разделить на их количество в кабеле.

Как определить площадь сечения цилиндра, конуса, призмы и пирамиды? Формулы

На практике часто возникают задачи, которые требуют умения строить сечения геометрических фигур различной формы и находить площади сечений. В данной статье рассмотрим, как строятся важные сечения призмы, пирамиды, конуса и цилиндра, и как рассчитывать их площади.

Объемные фигуры

Из стереометрии известно, что объемная фигура совершенно любого типа ограничена рядом поверхностей. Например, для таких многогранников, как призма и пирамида, этими поверхностями являются многоугольные стороны. Для цилиндра и конуса речь идет уже о поверхностях вращения цилиндрической и конической фигур.

Что значит слыть: толкование, синонимы Вам будет интересно: Что значит слыть: толкование, синонимы

Если взять плоскость и пересечь ею произвольным образом поверхность объемной фигуры, то мы получим сечение. Площадь его равна площади части плоскости, которая будет находиться внутри объема фигуры. Минимальное значение этой площади равно нулю, что реализуется, когда плоскость касается фигуры. Например, сечение, которое образовано единственной точкой, получается, если плоскость проходит через вершину пирамиды или конуса. Максимальное значение площади сечения зависит от взаимного расположения фигуры и плоскости, а также от формы и размеров фигуры.

Ниже рассмотрим, как рассчитывать площади образованных сечений для двух фигур вращения (цилиндр и конус) и двух полиэдров (пирамида и призма).

Цилиндр

Круговой цилиндр является фигурой вращения прямоугольника вокруг любой из его сторон. Цилиндр характеризуется двумя линейными параметрами: радиусом основания r и высотой h. Ниже схематически показано, как выглядит круговой прямой цилиндр.

Круговой цилиндр

Для этой фигуры существует три важных типа сечения:

  • круглое;
  • прямоугольное;
  • эллиптическое.

Эллиптическое образуется в результате пересечения плоскостью боковой поверхности фигуры под некоторым углом к ее основанию. Круглое является результатом пересечения секущей плоскости боковой поверхности параллельно основанию цилиндра. Наконец, прямоугольное получается, если секущая плоскость будет параллельна оси цилиндра.

Площадь круглого сечения рассчитывается по формуле:

Площадь осевого сечения, то есть прямоугольного, которое проходит через ось цилиндра, определяется так:

Сечения конуса

Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.

Бумажный конус

Видов конических сечений существует несколько. Перечислим их:

  • круглое;
  • эллиптическое;
  • параболическое;
  • гиперболическое;
  • треугольное.

Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.

Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:

Здесь z — это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z Понравилась статья? Поделись с друзьями:

Площадь поперечного сечения: особенности величины, как найти её для круга

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Окружность и круг — в чём отличие?

Часто понятия круг и окружность путают, хотя это разные вещи. Окружность — это замкнутая линия, а круг — это плоская фигура, ограниченная окружностью. Таким образом, гимнастический обруч или колечко — это окружности, а монета или вкусный блин — это круги.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от одной заданной точки — центра окружности.

Круг — бесконечное множество точек на плоскости, которые удалены от заданной точки, называемой центром круга, на значение, не превышающее заданного неотрицательного числа, называемого радиусом этого круга.

Уравнение окружности

1. Уравнение окружности с радиусом r и центром в начале декартовой системы координат: r2 = x2 + y2

2. Уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

r2 = (x – a)2 + (y – b)2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами (a, b) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Калькулятор площади круга

Варианты расчёта площади круга через радиус или диаметр
Выбираем вариант расчёта площади

Визуально выглядит так:

Вводим диаметр или радиус:

Площадь круга равна :

Калькулятор длины окружности

Площадь круга с радиусом r равна πr2. Здесь символ π (греческая буква пи) обозначает константу, выражающую отношение длины окружности к её диаметру или площади круга к квадрату его радиуса. Поскольку площадь правильного многоугольника равна половине его периметра, умноженного на апофему (высоту), а правильные многоугольники стремятся к окружности при росте числа сторон, площадь круга равна половине длины окружности, умноженной на радиус (то есть 1⁄2 × 2πr × r).

Википедия

Таблица с формулами площади круга

Радиус круга r
Диаметр

– это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно
разделить
его обратно на два.
Длина окружности
представляет собой удвоенное произведение радиуса и числа π:
P=2πr
, обратным методом получаем, что
радиус равен длине окружности
, разделенной на его множитель.

Длина окружности круга

Множество точек удаленных от центра круга на расстояние, не превышающее радиус круга, называется кругом. Отношение длины любой окружности C

к ее диаметру
d
всегда будет равно одному и тому же числу. Это число – всем известное число
π
(«пи»), которое примерно равно 3,14. Так же, справедлива формула определения числа
π
, как отношение длины окружности
C
к двум ее радиусам
r
. Исходя из этого, выводится формула длины окружности
C
, которая равна произведения числа
π
и диаметра
d
окружности или 2-м ее радиусам
r
.

Для примера

решим простую задачу, где нужно найти длину окружности, у которой известен радиус
r
=2 см.

Подставляем известные данные в формулу длины окружности и получаем, что длина окружности примерно равна 12,56 см.

Как найти площадь круга

Площадь круга можно найти двумя способами:

  • используя радиус круга,
  • используя диаметр круга.

Остановимся чуть подробнее на каждом способе и рассмотрим несколько примеров.

Формула площади круга через радиус круга

Сначала разберем общий случай.

Пусть нам дана окружность O O O произвольного радиуса R . R. R. Площадь круга через радиус вычисляется при помощи формулы

S = π R 2 S=pi R^2 S=πR2,

где π pi π – число «Пи», выражающее отношение длины окружности к ее диаметру и численно равное около 3 , 14 3,14 3,14,

R R R – радиус нашей окружности.

Теперь, чтобы было более понятно, рассмотрим пару практических примеров.

Найдите площадь круга, радиус которого равен 6 см. Ответ дайте, округленный до целого числа.

Решение:

Пользуемся нашей формулой для вычисления площади круга и получаем:

S = π R 2 = 3 , 14 ⋅ 6 ⋅ 6 = 3 , 14 ⋅ 36 = 113. S=pi R^2=3,14cdot 6 cdot 6=3,14 cdot 36=113. S=πR2=3,14⋅6⋅6=3,14⋅36=113.

Ответ: 113 см2.

Формула площади круга через диаметр

Рассмотрим сначала обобщенный случай без использования цифр.

Формула вычисления площади круга с помощью диаметра немного отличается от формулы, в которой мы использовали радиус. Но ответ остается, безусловно, таким же.

Итак, наша формула выглядит следующим образом:

S = π D 2 4 S=pi frac <4>S=π4D2​

Давайте разберемся, откуда она вообще взялась.

Для начала выразим радиус через диаметр. Получаем R = D 2 R=frac <2>R=2D​, затем подставляем полученное выражение в нашу исходную формулу S = π R 2 S=pi R^2 S=πR2 и получаем результат: S = π D 2 2 2 S=pi frac <2^2>S=π22D2​, далее упрощаем и выходим на окончательный ответ S = π D 2 4 S=pi frac <4>S=π4D2​.

Пример Найти площадь круга, если известно, что четвертая часть диаметра равна 2,5 см.

Решение:

D 4 = 2 , 5. frac <4>=2,5. 4D​=2,5.

D = 2 , 5 ⋅ 4 = 10. D=2,5 cdot 4=10. D=2,5⋅4=10.

Подставляем значения в формулу:

S = π D 2 4 = 3 , 14 ⋅ 1 0 2 4 = 3 , 14 ⋅ 100 4 = 3 , 14 ⋅ 25 = 78 , 5 S=pi frac <4>=3,14 cdot frac<10^2> <4>=3,14 cdot frac<100> <4>=3,14 cdot 25=78,5 S=π4D2​=3,14⋅4102​=3,14⋅4100​=3,14⋅25=78,5

Ответ: 78,5 см2.

Пример решения задачи посложнее.

Имеется два круга. Площадь первого 153 , 86 153,86 153,86 см2. Найдите площадь второго круга, радиус которого в 2 2 2 раза больше радиуса первого круга.

Решение: Для решения задачи нам в первую очередь нужно найти радиус первого круга. Из формулы S = π R 2 S=pi R^2 S=πR2 находим, что R = S π R=sqrt> R=πS​ ​.

R = 153.86 3.14 = 49 = 7. R=sqrt<3.14>>=sqrt <49>= 7. R=3.14153.86​ ​=49 ​=7.

Радиус второго круга равен 7 ⋅ 2 = 14. 7 cdot 2=14. 7⋅2=14.

Наконец, найдем площадь этого круга: S = π R 2 = 3.14 ⋅ 1 4 2 = 3 , 14 ⋅ 196 = 615 , 44. S=pi R^2=3.14cdot14^2=3,14 cdot 196=615,44. S=πR2=3.14⋅142=3,14⋅196=615,44.

Ответ: 615 , 44 615,44 615,44 см2.

Ищете специалиста, который сможет написать контрольную работу на заказ для вас? Наши эксперты подбирают индивидуальный подход к каждому клиенту!

Площадь круга описанного вокруг квадрата

Очень легко можно найти площадь круга описанного вокруг квадрата.
Для этого потребуется только сторона квадрата и знание простых формул. Диагональ квадрата будет равна диагонали описанной окружности. Зная сторону a ее можно найти по теореме Пифагора: отсюда . После того, как найдем диагональ – мы сможем рассчитать радиус: . И после подставим все в основную формулу площади круга описанного вокруг квадрата:

Рассмотрим пример расчета площади круга, описанного вокруг квадрата. Задача: дан квадрат, вписанный в круг. Его сторона a = 4 см. Найдите площадь окружности. Для начала рассчитаем длину диагонали d. Теперь подставляем данные в формулу

Зная несколько простых правил и теорему Пифагора, мы смогли рассчитать площадь описанной вокруг квадрата окружности.

Примеры решения задач

Задача 1

Найдите площадь круга, если известен его радиус см.

Решение: Для определения площади круга используем формулу (1):

см2. Сейчас мы имеем точное значение площади круга. Но если мы возьмем вместо число 3,14, то получим приближенное значение площади круга:

Задача 2

Найдите площадь земельного участка, если известно, что форма участка — круг, а диаметр участка составляет 50 м.

Решение: Чтобы найти площадь земельного участка, мы должны рассчитать площадь круга с диаметром 50 м. Используем формулу (2):

Основные свойства касательных к окружности

1. Касательная всегда перпендикулярна к радиусу окружности, проведенного в точке соприкосновения.

2. Кратчайшее расстояние от центра окружности к касательной равна радиусу окружности.

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Основные определения и свойства

ФигураРисунокОпределения и свойства
ОкружностьМножество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
ДугаЧасть окружности, расположенная между двумя точками окружности
КругКонечная часть плоскости, ограниченная окружностью
СекторЧасть круга, ограниченная двумя радиусами
СегментЧасть круга, ограниченная хордой
Правильный многоугольникВыпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Окружность
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Дуга
Часть окружности, расположенная между двумя точками окружности
Круг
Конечная часть плоскости, ограниченная окружностью
Сектор
Часть круга, ограниченная двумя радиусами
Сегмент
Часть круга, ограниченная хордой
Правильный многоугольник
Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1. Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2. Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1. Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3. Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2. Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector