Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как нарисовать 6 угольник в окружности

Правильные многоугольники

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Понятие правильного многоугольника

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Читайте так же:
Как нанести хром в домашних условиях

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Читайте так же:
Как осуществляется охлаждение углеродистой стали при отпуске

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

Правильный пятиугольник — построение, свойства и формулы

Бывают задачи на построение и нахождение некоторых геометрических параметров правильного пятиугольника. Построить фигуру непросто. Для этого математики рекомендуют несколько методик, позволяющих выполнить операцию более точно или за короткий промежуток времени. У фигуры есть свойства, а также формулы, позволяющие найти ее геометрические характеристики.

Правильный пятиугольник - построение, свойства и формулы

Точное построение фигуры

Специалисты рекомендуют некоторую последовательность действий, по которым построить правильный пятиугольник очень просто. Для операции необходимы обыкновенная тетрадь в клеточку, циркуль, карандаш, резинка и линейка. Следует выполнить некоторые шаги:

Если все пункты алгоритма выполнены правильно, то должен получиться пентагон, изображенный на рисунке 1:

Правильный пятиугольник - построение, свойства и формулы

Этот способ следует применять для точных построений и чертежей деталей. Однако для решения задач, в которых необходимо схематически изобразить пятиугольник, этот вариант не подойдет.

Алгоритм Биона

Прием Биона является менее точным методом, чем первый. Он позволяет построить любой правильный многоугольник, вписанный в произвольный круг. Для операции необходимо воспользоваться алгоритмом (шаблоном) Биона, имеющим такой вид:

Правильный пятиугольник - построение, свойства и формулы

Погрешность построения многоугольника с 5, 7, 9 и 10 сторонами при использовании алгоритма довольно маленькая. Ее значения равно 3,2%. Однако при n>10 погрешность составляет не более 11%.

Приближенные методы

Существует несколько методов, позволяющих приближенно изобразить фигуру. Однако оптимальным является построение пентагона (рис. 2), используя две окружности (описанную и вписанную).

Метод известного математика А. Дюрера является оптимальным среди остальных, поскольку на построение затрачивается минимальное количество времени. Для его реализации следует выполнить определенные шаги алгоритма Дюрера:

Правильный пятиугольник - построение, свойства и формулы

Существует еще один метод — построение пятиугольника из десятиугольника, который вписан в окружность. Для этого следует соединить его вершины через одну. Однако способ рекомендуется применять только в том случае, когда исходная фигура уже имеется. Кстати, его следует строить также методом А. Дюрера.

Математики рекомендуют еще один простой способ. Для его реализации необходимо начертить окружность с диаметром АD. После этого его нужно поделить на 3 равные части, то есть AB = BC = CD. Затем из точки С следует опустить перпендикуляры на окружность. Обозначить места пересечения точками E и F. Проделать такую же процедуру с точкой B, обозначив пересечения точками G и H. Остается лишь соединить все точки отрезками.

Признаки и свойства

Не всегда получается верно идентифицировать пятиугольник. Для этого математики предлагают признаки, которые применимы только к правильной фигуре. К ним можно отнести следующие:

Следует отметить, что признаки справедливы для любого правильного многогранника. Пять осей симметрии имеет правильный пятиугольник (сколько сторон, столько и осей). Пентагон обладает некоторыми свойствами, которые будут очень полезны при решении задач. К ним можно отнести следующие:

Правильный пятиугольник - построение, свойства и формулы

Однако свойств недостаточно при решении задач, поскольку существуют некоторые формулы и соотношения для нахождения основных параметров пентагона.

Расчет параметров

С помощью соотношений можно легко найти необходимые характеристики любой фигуры. Однако в некоторых источниках не указаны условные обозначения известного параметра пентагона. Это существенно затрудняет понимание формулы, а также ее дальнейшее использование. Перед изучением следует нарисовать фигуру и обозначить некоторые величины, которыми могут быть диагонали, стороны, апофемы и радиусы.

Правильный пятиугольник - построение, свойства и формулы

Рекомендуется использовать различные литеры или буквенные обозначения. Недопустимо пронумеровывать вершины, поскольку при вычислениях можно ошибиться. Нельзя использовать вместо букв цифры при обозначениях. Например, пентагон ABCDE является правильной записью. Допускается применение чисел в индексах, а именно, в пятиугольнике правильного типа ABCDE при пересечении его диагоналей образовался пентагон A1B1C1D1E1.

Математики рекомендуют обозначать только промежуточные фигуры или их проекции литерами с индексами. Для каждой новой фигуры следует вводить другие обозначения. Не следует использовать зарезервированные переменные. Например, центр окружности в точке P является недопустимой записью, поскольку такой буквой обозначается периметр.

Читайте так же:
Как подключить телевизионную антенну

Условные обозначения

Для нахождения основных величин пентагона следует обозначить некоторые его параметры. Фигура имеет следующие обозначения:

Значения сторон равны между собой. Площадь правильного пятиугольника — характеристика двумерной фигуры, которая показывает ее размерность. Периметром называется сумма всех 5 сторон. Полупериметр вычисляется по следующему соотношению: p = P / 2. Диагонали — отрезки, проведенные из одной вершины к противоположной (несмежной).

Соотношения и формулы

После обозначений следует переходить к рассмотрению основных формул, при помощи которых можно вычислять параметры фигуры. Сторону можно найти, воспользовавшись такими соотношениями:

Радиус вписанной окружности в пентагон можно найти, используя тригонометрические функции. Однако существует также формула, позволяющая вычислить приближенное значение. Это необходимо в том случае, когда под рукой нет специального онлайн-калькулятора, компьютера или таблиц Брадиса. Формулы для нахождения радиуса вписанной окружности:

Правильный пятиугольник - построение, свойства и формулы

Математики также рекомендуют описать вокруг пентагона окружность. Это расширит возможности по поиску его основных характеристик. Однако ее радиус следует вычислить. Формулы для его нахождения выглядят таким образом:

Периметр определяется просто: Р = 5а. Значение полупериметра эквивалентно половине периметра, то есть p = P / 2 = 5a / 2 = 2,5a. Площадь можно найти, используя такие формулы:

Правильный пятиугольник - построение, свойства и формулы

Высота правильного пятиугольника (h) — отрезок, проведенный из центра на любую из сторон. Она делит ее на две равные части, поскольку является биссектрисой и медианой равнобедренного треугольника. У последнего две стороны — радиусы описанной окружности, а третья — сторона пентагона. Высота называется также апофемой и проекцией на «а». Вычисляется ее значение по формуле h = a * tg(72) / 2.

Величина Ф является отношением площади пентагона (S) к площади (S1) правильного пятиугольника, полученного при пересечении диагоналей первого: S / S1 = Ф^4 = 3Ф + 2 = (3 * 5^(1/2) + 7) / 2. Длина диагонали находится по такому соотношению: d = [Ф * 5^(1/2) * R]^(1/2).

Таким образом, при решении задач необходимо знать основные признаки, свойства, соотношения и формулы для нахождения основных характеристик пентагона. Практика обязательна, поскольку теоретические знания без практического применения бесполезны.

Как я могу создать обычный шестиугольник с помощью PowerPoint?

Я хочу создать правильный шестиугольник, в котором каждая сторона имеет одинаковую длину.

Сначала я попытался нарисовать шестиугольник, используя shift, но он не был обычным (посмотрите, что произойдет, когда я поверну его на 60 градусов):

Нерегулярный шестиугольник

Поэтому я решил, что, возможно, смогу создать один, нарисовав 6 равносторонних треугольников со смещением, а затем переместив их в нужное положение. К сожалению, они не идеально соединяются друг с другом, и на самом деле они представляют собой 6 отдельных фигур, что означает, что я не могу добавить контур, если они не выглядят странно:

Связка треугольников, делающих шестиугольник

Затем я попытался создать шестиугольник, используя смещение, равное высоте моего треугольного шестиугольника, а затем с помощью желтой ручки отрегулировать его так, чтобы он соответствовал внутренним углам треугольника. Это тоже не сработало идеально, так как я его обмахивал, и хотя он был очень и очень близок, он тоже не был идеальным. Делая поиск Google не помогло тоже.

Итак, как вы можете сделать обычный шестиугольник в PowerPoint?

В равной степени точный результат без VBA получается, когда я использую диалог «Размер и положение» из контекстного меню. Высота должна быть sin(60)*width , это дает мне хороший правильный шестиугольник.

Чтобы получить обычный шестиугольник в PowerPoint, создайте шестиугольник, используя shift, а затем выполните следующую команду VBA с выбранным шестиугольником:

После того, как я создал приблизительную форму, используя оверлей на близком, но не совсем равностороннем треугольнике, я решил заняться программированием. Я использовал некоторый VBA, чтобы проверить положение ручки (с выбранным шестиугольником):

Значение для близкого, но не совсем шестиугольника было .28002, поэтому я начал возиться и пытаться вычислить, предполагая, что это значение каким-то образом основано на углах. Это не так. Я попытался установить его на .28 — это тоже не работает.

Поэтому я установил его в крайнее левое положение, которое он мог пройти (превратив шестиугольник в квадрат), и значение было равно 0. Затем я попытался установить его в крайнее правое положение (превратить шестиугольник в ромб) и получил значение. Учитывая начальную стоимость близкого, но не совсем шестиугольника в .28002, и мои многочисленные попытки сделать это правильно, но ни один из них не работал, я попытался взять половину .57412, которая была .28706, и о чудо, это было волшебное число.

Найден более простой способ создания идеального шестиугольника: сначала в PowerPoint создайте идеальный круг: например, 4 см х 4 см. Теперь создайте шестиугольник на вершине круга и изменяйте его размеры до тех пор, пока все края не «защелкнутся» на круг: идеальный шестиугольник.

Или используйте следующее на любом шестиугольнике: высота 4 см х ширина 4,46 см. Затем «Lock Aspect Ratio», чтобы изменить размер.

Обычный шестиугольник имеет отношение ширины к высоте 2 / sqr (3). Первый угол, верхний левый, имеет 25% ширины. Таким образом, можно подумать, что Adjustments (1) — это точка, в которой Microsoft определяет, куда поставить угловую точку, для шестиугольника должно быть 0,25, но нет. У Microsoft есть точка в h / w * p, что означает, что пропорция будет действительна только в том случае, если отношение w / h равно 1, а это не так, это 2 / sqr (3). Таким образом, вы должны отрегулировать Adjustments (1) по этому смещению.

Читайте так же:
Как подключиться к камере видеонаблюдения

Как предложено jmac, я также рекомендую использовать vb-редактор, не меняя ширину или высоту, поскольку он не исправит ложное положение угловой точки, которое вы увидите при вращении шестиугольника и соединении с другими аналогичными шестиугольниками. Независимо от того, если вы рисуете шестиугольник с удерживающим сдвигом или без него, ваш шестиугольник необходимо отрегулировать в соответствии с его настройкой угла.

Выберите свой шестиугольник, нажмите Alt + F11 (откроется vb-редактор), нажмите Ctrl + G (откроется немедленное окно). Вставить

ActiveWindow.Selection.ShapeRange (1) .Adjustments (1) = 1 / sqr (12)

Это исправляет шестиугольник в обычный шестиугольник, который можно повернуть на любой кратный угол 60 градусов и совместить с шестиугольниками с идеальным соответствием.

1 / sqr (12) проистекает из того факта, что 0,25 необходимо скорректировать с учетом отношения 2 / sqr (3), поэтому (1/4) * (2 / sqr (3)) = 1 / sqr (12) ,

Как начертить восьмиугольник без циркуля

Чтобы сделать любую беседку у себя на участке, нужно сначала определиться с местом, где она будет стоять, и подготовить его.

Итак, место выбрано и подготовлено.

Восьмиугольная беседка: разметка.

Прежде всего, нужно разметить правильный восьмиугольник. Как это сделать?

  1. Нужно нарисовать квадрат, затем провести в нем диагонали.
  2. Каждую сторону следует разделить пополам.
  3. Через точку пересечения диагоналей и середину каждой стороны нужно провести отрезок, равный длине половины диагонали.
  4. Теперь осталось последовательно соединить полученные точки и вершины квадрата.

восьмиугольная беседка

Восьмиугольная беседка: ставим столбики.

После построения правильного многоугольника в точки его вершин вбиваются столбики нужной высоты и плюс один, в точке пересечения диагоналей. Потом еще два столба, чтобы поддержать балки потом.

Каждый столбик нужно пробурить буром, например, диаметром 15 см на 90 см.

Туда втыкаются трубы с 15 см в диаметре, внутрь труб втыкается арматура так, чтобы она была выше уровня вставленной трубы. Затем арматура заливается цементным раствором. Как только все застынет, обрезают болгаркой арматуру настолько, чтобы ее осталось выше уровня трубы 5 см. После этого собирается первая нижняя обвязка размером, как говорят, "вполдерева". Получится правильный восьмиугольник с внутренними параллельно расположенными балками.

На углах с помощью шкантов и шурупов ставят вертикальные столбики-стойки. Их примерное сечение 100 мм х70 мм. Их выбирают круглыми, квадратными или треугольными. Сверху них делается деревянная обвязка, обрезанная под таким углом, чтобы доски легли хорошо. Прикрепляется она к верхним торцовым концам стоек.

Восьмиугольная беседка: стропила.

Вырезается затем фанерный круг диаметром 35см (толщина фанеры может быть 20 мм). Круг прикрепляется к верху центральной вертикальной стойке. Затем из брусков делают стропила. Кладут каждый так: один конец на обвязку над вертикальными стойками, а другой конец кладут на круг. Стропила подгоняют, делая вырезы, чтобы легли хорошо.

Обрешетка, конечно, дело трудоемкое. Ведь нужно срезать доски обоих сторон под заданным углом 22,50, причем постараться сделать это максимально точно, чтобы они хорошо состыковались над стропилами. Эта работа является самой тонкой и кропотливой.

Восьмиугольная беседка: завершающие работы.

Пол можно застелить доской, обработав ее предварительно для выравнивания. Шпунтованные доски лучше не применять. В шпунтовые канавки может попадать дождевая вода, что приведет к гниению дерева. Пол хорошо бы обработать масляной краской.

Стол сделать можно таким образом: на вертикальной стойке, на уровне высоты стола вырезают канавку, чтобы круг получился, и такую же канавку вырезают внизу стойки. Стол выбирают диаметром примерно 150-180 см. Для стола можно подобрать 4 мебельных доски, сложить их вместе и вырезать круг. Затем нужно вырезать и середину по диаметру пояска, который был вырезан ранее.

Для укрепления стола берут 2 части десятимиллиметровой фанеры, вырезают круги диаметром 0,7 м, разрезают каждую часть еще на две равные части, и потом серединку делают. Положив их на пол вокруг стойки с некоторым смещением, стягивают шурупами.

Дальше делается столешница их приготовленных четырех частей.

Крышу тоже покрывают по своему усмотрению и с учетом материалов, которые наиболее доступны.

Восьмиугольная беседка

Здесь легко и интересно общаться. Присоединяйся!

Умеете построить угол 45 градусов?
Для этого надо от конца первой стороны построить угол -90 и в нём построить биссектрису продлите биссектрису в противоположную сторону и отложите туда длину стороны.

Всё повторить ещё 5 раз и замкнуть 8-угольник.

Если не нравится,
1. нарисуйте перекрестье двух перпендикулярных линий
2. постройте биссектрисы всех четырёх прямых углов
3. получили 8 лучей, надо к каждому лучу построить по две параллельные линии,
отстоящие на половину стороны 8-угольника, Длина этой стороны должна быть задана в начале задания.
4. Не принимая во внимание 8 первоначальных лучей, найдите точки пересечения всех остальных шестнадцати линий, соедините 8 точек, лежащих дальше всего от центра, ломаной линией, поочерёдно переходя к следующей ближайшей точке. Получится правильный 8-угольник.

Только циркулем и линейкой? ! –не знаю.
А так — угол вычислить, и порядок.

При помощи циркуля проведите окружность. Отметьте ее центр.

Сделайте отметки на концах любого диаметра окружности. Это первые две вершины будущего восьмиугольника.

Установите раствор циркуля, равный диаметру окружности. Поставив иглу циркуля в одну из отмеченных на предыдущем этапе точек, сделайте засечки выше и ниже окружности. Старайтесь делать их не слишком короткими, поскольку они должны будут пересекаться с засечками, которые вы сделаете на следующем этапе.

Читайте так же:
Где встречается железо в природе

Поставьте иглу циркуля в другую отмеченную точку и точно так же сделайте засечки выше и ниже окружности. Если провести прямую линию между точками пересечения засечек, то она пройдет через центр окружности, разделив первоначальный диаметр точно пополам, и будет к нему перпендикулярна.

Приложите линейку к двум найденным точкам и сделайте отметки на окружности там, где ее пересекает построенный перпендикуляр. Вы разделили окружность на четыре равные части, и найденные вами точки являются вершинами квадрата, вписанного в окружность. Первоначальный диаметр и его перпендикуляр, найденный на предыдущем этапе, служат диагоналями этого квадрата.

Чтобы завершить построение правильного восьмиугольника, нужно найти перпендикуляры к сторонам квадрата.

Установите раствор циркуля, равный стороне квадрата. Поместите иглу циркуля в любую вершину квадрата и сделайте засечки по обеим ее сторонам вне окружности.

Повторите процедуру с двумя вершинами квадрата, смежными с первой. У вас должны получиться две точки в местах пересечения засечек.

Приложите линейку так, чтобы она проходила через любую из найденных точек и центр окружности. Сделайте две отметки на окружности там, где ее пересекает полученная прямая. Повторите то же самое со второй найденной точкой. Теперь у вас есть восемь точек, делящих окружность на восемь равных частей. Это и есть вершины правильного восьмиугольника.

При помощи линейки соедините последовательно все восемь найденных точек. Построение завершено.

Построить равнобедренный треугольник (любого размера) с углом при вершине 45.

На основании треугольника отложить отрезок с длиной, равной длине стороны восьмиугольника, который следует построить.

Из конца отрезка провести прямую, параллельную боковой стороне треугольника, примыкающей к началу отрезка, до пересечения её с второй боковой стороной треугольника.

Отрезок от вершины треугольника до найденной точки и будет являться радиусом окружности, описанной вокруг искомого 8-угольника.

Ув. Джойстик. В вопросе автора длина стороны считается заданной.

1) Продолжить данный отрезок А1 в одну из сторон.
2) Провести перпендикуляр к отрезку А1.
3) Построить биссектрису полученного прямого угла.
4) На биссектрисе отложить новый отрезок А2 такой же длины,
как у А1.
5) Повторить 7 раз операции 1-4, начиная с отрезка А2.

Как нарисовать правильный восьмиугольник

Автор Андрей Черкасов задал вопрос в разделе Домашние задания

Что-то я туплю.. Как начертить правильный восьмиугольник по стороне? и получил лучший ответ

Ответ от Ўля Павлова[гуру]
Умеете построить угол 45 градусов?
Для этого надо от конца первой стороны построить угол -90 и в нём построить биссектрису продлите биссектрису в противоположную сторону и отложите туда длину стороны.
Всё повторить ещё 5 раз и замкнуть 8-угольник.
Если не нравится,
1. нарисуйте перекрестье двух перпендикулярных линий
2. постройте биссектрисы всех четырёх прямых углов
3. получили 8 лучей, надо к каждому лучу построить по две параллельные линии,
отстоящие на половину стороны 8-угольника, Длина этой стороны должна быть задана в начале задания.
4. Не принимая во внимание 8 первоначальных лучей, найдите точки пересечения всех остальных шестнадцати линий, соедините 8 точек, лежащих дальше всего от центра, ломаной линией, поочерёдно переходя к следующей ближайшей точке. Получится правильный 8-угольник.

Ответ от Людмила[гуру]

При помощи циркуля проведите окружность. Отметьте ее центр.
2
Сделайте отметки на концах любого диаметра окружности. Это первые две вершины будущего восьмиугольника.
3
Установите раствор циркуля, равный диаметру окружности. Поставив иглу циркуля в одну из отмеченных на предыдущем этапе точек, сделайте засечки выше и ниже окружности. Старайтесь делать их не слишком короткими, поскольку они должны будут пересекаться с засечками, которые вы сделаете на следующем этапе.
4
Поставьте иглу циркуля в другую отмеченную точку и точно так же сделайте засечки выше и ниже окружности. Если провести прямую линию между точками пересечения засечек, то она пройдет через центр окружности, разделив первоначальный диаметр точно пополам, и будет к нему перпендикулярна.
5
Приложите линейку к двум найденным точкам и сделайте отметки на окружности там, где ее пересекает построенный перпендикуляр. Вы разделили окружность на четыре равные части, и найденные вами точки являются вершинами квадрата, вписанного в окружность. Первоначальный диаметр и его перпендикуляр, найденный на предыдущем этапе, служат диагоналями этого квадрата.
6
Чтобы завершить построение правильного восьмиугольника, нужно найти перпендикуляры к сторонам квадрата.
7
Установите раствор циркуля, равный стороне квадрата. Поместите иглу циркуля в любую вершину квадрата и сделайте засечки по обеим ее сторонам вне окружности.
8
Повторите процедуру с двумя вершинами квадрата, смежными с первой. У вас должны получиться две точки в местах пересечения засечек.
9
Приложите линейку так, чтобы она проходила через любую из найденных точек и центр окружности. Сделайте две отметки на окружности там, где ее пересекает полученная прямая. Повторите то же самое со второй найденной точкой. Теперь у вас есть восемь точек, делящих окружность на восемь равных частей. Это и есть вершины правильного восьмиугольника.
10
При помощи линейки соедините последовательно все восемь найденных точек. Построение завершено.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector