Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Передаточное число

Передаточное число

Передаточное число (u,!) является величиной, обратной передаточному отношению, и рассчитывается как отношение числа зубьев ведомой шестерни (z_2,!) к числу зубьев ведущей шестерни (z_1,!), а также, как отношение длин окружностей в сечении (или радиусов окружностей в сечении) в точке зацепления, ведущего вала по отношению к ведомому в ремённой или фрикционной передаче. Вместо количества зубьев правильней использовать эффективные длины окружностей, или радиусы шестерней, которые определяют передачу вращающего движения, аналогично формуле для фрикционной передачи. По сути формула отношения числа зубьев является частным случаем отношения эффективных длин окружностей, вписанных в шестерни, находящиеся в зацеплении.

u=frac<1 data-lazy-src=

См. также

Литература

  1. Под ред. Скороходова Е. А. Общетехнический справочник. — М .: Машиностроение, 1982. — С. 416.
  2. Гулиа Н. В., Клоков В. Г., Юрков С. А. Детали машин. — М .: Издательский центр «Академия», 2004. — С. 416. — ISBN 5-7695-1384-5
  3. Анурьев В. И. Справочник конструктора-машиностроителя: В 3 т. / Под ред. И. Н. Жестковой. — 8-е изд., перераб. и доп.. — М .: Машиностроение, 2001. — ISBN 5-217-02962-5

Примечания

  • Механизмы
  • Детали машин и механизмов
  • Механические передачи

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Передаточное число» в других словарях:

ПЕРЕДАТОЧНОЕ ЧИСЛО — передаточное отношение отношение числа оборотов ведомого вала к числу оборотов ведущего вала. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

ПЕРЕДАТОЧНОЕ ЧИСЛО — отношение числа зубьев колеса к числу зубьев шестерни в зубчатой передаче, числа зубьев колеса к числу заходов червяка в червячной передаче, числа зубьев большой звездочки к числу зубьев малой в цепной передаче; диаметра большого шкива или катка… … Большой Энциклопедический словарь

передаточное число — величина, обратная постоянной счетчика, выражающая соотношение между числом оборотов подвижной части и энергией, учитываемой счетчиком: в оборотах на киловатт час [об/(кВт•ч)] для счетчиков активной энергии; в оборотах на киловар час… … Справочник технического переводчика

передаточное число — отношение числа зубьев колеса к числу зубьев шестерни в зубчатой передаче, числа зубьев колеса к числу заходов червяка в червячной передаче, числа зубьев большой звёздочки к числу зубьев малой в цепной передаче; отношение диаметра большого шкива… … Энциклопедический словарь

передаточное число — pavaros skaičius statusas T sritis fizika atitikmenys: angl. gear ratio; transmission ratio vok. Übersetzungsverhältnis, n; Übersetzungszahl, f rus. передаточное отношение, n; передаточное число, n pranc. rapport de transmission, m; rapport… … Fizikos terminų žodynas

Передаточное число — отношение числа зубьев колеса к числу зубьев шестерни Зубчатая передача), числа зубьев колеса к числу заходов червяка в червячной передаче (См. Червячная передача), числа зубьев большой звёздочки к числу зубьев малой в цепной передаче (См … Большая советская энциклопедия

ПЕРЕДАТОЧНОЕ ЧИСЛО — отношение числа зубьев большего колеса к числу зубьев меньшего в зубчатой передаче, числа зубьев колеса к числу заходов червяка в червячной передаче, числа зубьев большой звёздочки к числу зубьев малой в цепной передаче, а также диаметра большого … Большой энциклопедический политехнический словарь

Передаточное число — English: Transfer number Величина, обратная постоянной счетчика, выражающая соотношение между числом оборотов подвижной части и энергией, учитываемой счетчиком: в оборотах на киловатт час об/[(кВт×ч)] для счетчиков активной энергии; в… … Строительный словарь

передаточное число зубчатой передачи — (u) передаточное число Отношение числа зубьев колеса к числу зубьев шестерни. [ГОСТ 16530 83] Тематики передачи зубчатые Обобщающие термины параметры зубчатой передачи и характеристики зубчатого зацепленияпонятия, относящиеся к зубчатому… … Справочник технического переводчика

передаточное число редуктора воздушного винта ТВД — передаточное число редуктора винта Механизм для уменьшения частоты вращения воздушного винта по отношению к частоте вращения вала ГТД. [ГОСТ 23851 79] Тематики двигатели летательных аппаратов Синонимы передаточное число редуктора винта EN… … Справочник технического переводчика

Читайте так же:
Как правильно штробить бетонную стену

Кинематика зубчатых механизмов

Рассмотрим кинематику основных видов зубчатых механизмов:

  1. Одна пара зубчатых колес
  2. Многоступенчатая передача
  3. Планетарные и дифференциальные механизмы
  4. Сложные механизмы

Одна пара зубчатых колес

пара зубчатых колес

пара зубчатых колес

При пересопряжении зубьев следующий зуб второго колеса должен попасть в следующую впадину первого, т.е. шаги на начальных окружностях находящихся в зацеплении колес должны быть одинаковыми:

Таким образом, для одной пары колес передаточное отношение прямо пропорционально отношению угловых скоростей и обратно пропорционально отношению чисел зубьев колес, составляющих пару:

Знак передаточного отношения показывает направление вращения колеса на выходе по отношению к направлению вращения на входе:

  • (+) – направления вращения на входе и на выходе совпадают. Для пары колес направление вращения совпадает при внутреннем зацеплении (рисунок 35б);
  • (–) – колеса вращаются в противоположные стороны. Это происходит при внешнем зацеплении (рисунок 35а).

На рисунке 35 дана фронтальная проекция передач, а также их условное изображение на кинематических схемах при виде сбоку (или в разрезе).

Многоступенчатая передача

Для увеличения кинематического эффекта несколько зубчатых пар могут последовательно соединяться в единый механизм. Такой механизм называется многоступенчатым зубчатым механизмом или многоступенчатой передачей. Схема одного из таких механизмов приведена на рисунке 36.

многоступенчатая передача

Запишем передаточные отношения для каждой пары колес данного механизма:

Из схемы видно, что колеса 2 и 3 находятся на одном валу и вращаются с одной угловой скоростью ( ω2 = ω3 ), аналогично ω4 = ω5 . Поэтому в приведенном выше уравнении эти члены сократились.

Таким образом, общее передаточное отношение многоступенчатого механизма равно произведению частных передаточных отношений ступеней, из которых состоит данный механизм:

В этой формуле “m” – число передач внешнего зацепления (если число передач внешнего зацепления четное, то знак «+», т.е. колеса на входе и на выходе вращаются в одну сторону; если нечетное, то знак «–». Количество передач внутреннего зацепления не учитывается, т.к. внутреннее зацепление не изменяет направление вращения).

В приведенном примере m=2 (пары Z1* Z2 и Z3* Z4; пара Z5* Z6 – пара внутреннего зацепления) и, таким образом, колеса «1» и «6» вращаются в одну сторону.

Планетарные и дифференциальные механизмы

В практике применяются зубчатые механизмы, имеющие колеса с подвижными геометрическими осями (сателлиты). Такие механизмы называются планетарными (если имеют одну степень свободы) или дифференциальными (если степень свободы равна двум).

Планетарные и дифференциальные механизмы позволяют получить более высокий кинематический эффект, более высокий кпд, более удобную компоновку. Дифференциальные механизмы позволяют также раскладывать одно движение на два или складывать два движения в одно.

дифференциальный и планетарный механизмы

На рисунке 37 приведен пример дифференциального (рисунок 37 а) и планетарного механизмов (рисунок 37 б). В этих механизмах колесо «2» имеет подвижную геометрическую ось – это и есть сателлит.

Неподвижная геометрическая ось, вокруг которой движется ось сателлита, называется центральной осью. Колеса, геометрические оси которых совпадают с центральной, также называются центральными (на рисунке 37 колеса «1» и «3» – иногда такие колеса называют солнечными). Звено, соединяющее ось сателлитов с центральной осью, называется водилом (водило обычно обозначается «H»).

При кинематическом исследовании дифференциальных и планетарных механизмов применяется метод обращения движения (по-другому его называют методом остановки водила). Смысл этого метода заключается в том, что если всем звеньям системы добавить (с любым знаком) одну и ту же скорость, то характер относительного движения этих звеньев не изменится.

Рассмотрим решение с помощью этого метода на примере механизмов, изображенных на рисунке 37. Пусть звенья этого механизма имеют соответственно угловые скорости: ω1 , ω2 , ω3 , ωH .

Добавим всем этим звеньям угловую скорость (– ωH ). Тогда они будут иметь следующие скорости: ( ω1– ωH ), ( ω2 – ωH ), ( ω3 – ωH ), ( ωH – ωH ) = 0. Водило стало неподвижным, значит и ось сателлита 2 также стала неподвижной, т.е. механизм превратился в обычный многоступенчатый механизм с неподвижными осями всех зубчатых колес.

Записываем уравнение передаточного отношения между центральными колесами этого многоступенчатого механизма (для того, чтобы отличить передаточное отношение механизма с остановленным водилом от первоначально заданного, в верхнем индексе ставят обозначение водила H. Для данного примера читается – передаточное отношение от первого к третьему при остановленном водиле):

Читайте так же:
Как проверить работает ли генератор на ваз

Формулу такого типа, полученную на основе метода обращения движения, называют формулой Виллиса. В данном конкретном механизме (рисунок 38) имеется еще одна особенность – колесо 2 входит последовательно в два зацепления (с первым и третьим колесами), являясь ведомым для первого колеса и ведущим – для второго.

В результате в уравнении его число зубьев сократилось, т.е. его число зубьев не влияет на общее передаточное отношения механизма. Такие колеса часто называют «паразитными», хотя правильно их называть ведомо-ведущими.

Полученная формула является универсальной для обоих механизмов, изображенных на рисунке 37. Дифференциальный механизм, изображенный на рисунке 37а, имеет две степени свободы, а поэтому для определенности движения надо задать законы движения двум звеньям. При этом возможны следующие варианты:

  1. заданы ω1 и ω3 ; из записанной формулы определяется ωH (вариант, изображенный на рисунке 37 а);
  2. заданы ω1 и ωH ; из записанной формулы определяется ω3 ;
  3. заданы ωH и ω3 ; из записанной формулы определяется ω1 .

Так как звеньям можно задавать любые законы движения, то, как частный случай, одному из центральных колес зададим угловую скорость, равную нулю. Например, в рассматриваемом механизме зададим ω3=0 , другим словами, затормозим третье колесо. Таким приемом отнимается одна из двух степеней свободы, и механизм из дифференциального превращается в планетарный (рисунок 37 б).

Таким образом, планетарный механизм это частный случай дифференциального, когда одно из центральных колес неподвижно (заторможено).

Поэтому решаются эти механизмы совершенно одинаково, по одним и тем же уравнениям, только в планетарном механизме для неподвижного колеса в уравнение подставляется значение угловой скорости, равное нулю. Для изображенного на рисунке 37б планетарного механизма:

Здесь приведен конкретный пример решения, но на самом деле на этом примере надо усвоить метод решения, подход к решению такого рода задач, т.к. метод один, но для каждой схемы механизма будут получаться свои уравнения.

Сложные механизмы

Существуют механизмы, включающие в свой состав различные части (обычные, планетарные, дифференциальные). В этом случае необходимо разделить механизм на части, записать уравнения передаточных отношений для каждой из них, используя соответствующий метод решения.

Совместным решением полученных алгебраических уравнений находят общее передаточное отношение механизма. (Пример см. в рекомендациях по выполнению расчетно-графического задания).

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Кинематический и силовой расчеты зубчатой передачи.

Расчетная окружная скорость v, м/с, цилиндрической передачи
v=<omega d_w data-lazy-src=

Отношение числа зубьев z2 колеса к числу зубьев z1 шестерни называется передаточным числом зубчатой передачи u.

Читайте так же:
Какая арматура идет на фундамент

Таким образом,
u=z_2/z_1

  • Цилиндрической в закрытом корпусе: ≤12,5
  • Конической в закрытом корпусе: ≤6,3
  • Открытой: ≤15

Средние значения коэффициента полезного действия одноступенчатой зубчатой передачи на подшипниках качения в зависимости от конструкции и степени точности.

Закрытая 6-6 и 7-й степеней точности с жидкой смазкойЗакрытая 8-й степени точности с жидкой смазкойОткрытая с густой смазкой
Цилиндрическая0,980,970,96
Коническая0,970,960,94

Цилиндрическая зубчатая передача Рис. 1

Окружная сила зубчатой передачи Ft:
цилиндрической (рис. 1)
F_t=<2T_1 data-lazy-src=

Рис. 2

Передаваемые зубчатыми колесами крутящие моменты определяют по формулам

и
T=P/omega.

Так как силы трения между зубьями малы, то силу давления между ними F можно считать направленной по общей нормали к соприкасающимся поверхностям зубьев, т. е. по линии зацепления (см. рис. 1). Составляющие этой силы: в цилиндрических прямозубых (рис. 1) и шевронных передачах — окружная сила Ft и радиальная сила Fr; в конической прямозубой (рис. 2) и цилиндрической косозубой (рис. 3) передачах — окружная сила Ft радиальная сила Fr, и осевая сила Fa.

Косозубая передача

Рис. 3

Радиальная сила, действующая на зубчатое колесо прямозубой цилиндрической передачи (рис. 1),
F_r=F_t tg alpha_w
косозубой (рис. 3), или шевронной, передачи
F_r=F_t tg alpha_wt
конической прямозубой передачи (рис. 2)
F_r=F_t tg alpha_w cos delta

Осевая сила, действующая на зубчатое колесо: цилиндрической косозубой передачи (рис. 3)
F_a=F_t tg beta
конической прямозубой передачи (рис. 2)
F_a=F_t tg alpha_w sin delta

Сила давления между зубьями прямозубой цилиндрической передачи (рис. 1)
F=F_t/<cos alpha_w data-lazy-src=

Зубчатые передачи

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение — ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее — колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

Зубчатые передачи классифицируются по признакам, приведенным ниже.

  1. По взаимному расположению осей колес: с па­раллельными осями (цилиндрическая передача — рис. 172, I—IV); с пере­секающимися осями (коническая передача — рис. 172, V, VI); со скрещива­ющимися осями (винтовая передача — рис. 172, VII; червячная передача — рис. 172, VIII).
  2. В зависимости от относительного вращения колес и расположения зубьев различают передачи с внеш­ним и внутренним зацеплением. В первом случае (рис. 172, I—III) враще­ние колес происходит в противоположных направлениях, во втором (рис. 172, IV) — в одном направлении. Реечная передача (рис. 172, IX) служит для преобразования вращательного движения в поступательное.
  3. По форме профиля различают зубья эвольвентные (рис. 172, I, II) и неэвольвентные, например цилиндрическая передача Новикова, зу­бья колес которой очерчены дугами окружности.
  4. В зависимости от расположения теоретичес­кой линии зуба различают колеса с прямыми зубьями (рис. 173, I), косыми (рис. 173, II), шевронными (рис. 173, III) и винтовыми (рис. 173, IV). В непрямозубых передачах возрастает плавность работы, уменьшается износ и шум. Благодаря этому непрямозубые передачи большей частью применяют в установках, требующих высоких окружных скоростей и пере­дачи больших мощностей.
  5. По конструктивному оформлению различают закры­тые передачи, размещенные в специальном непроницаемом корпусе и обес­печенные постоянной смазкой из масляной ванны, и открытые, работаю­щие без смазки или периодически смазываемые консистентными смазками (рис. 174).
  6. По величине окруж­ной скорости различают: тихо­ходные передачи (v равной до 3 м/с), среднескоростные (v равной от 3. 15 м/с) и быстроходные (v более 15 м/с).
Читайте так же:
Как сделать антенну для телевизора в квартире

Основы теории зацепления

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль (рис. 175).

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 176 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О1 и О2 называется линией центров или межосевым расстоянием — aw.

Точка Р касания начальных окружностей dW1 и dW2 — полюс — все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным* окружностям db1, db2, двух сопряженных колес, назы­вается линией зацепле­ния. Отрезок ga линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол ?w между линией зацеп­ления и перпендикуляром к ли­нии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Рn ведущей шес­терни O1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму (рис. 177). При увеличе­нии числа зубьев до бесконечно­сти колесо превращается в рейку и зуб приобретает пря­молинейное очертание. С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб. При умень­шении числа зубьев, когда z < zmim, происходит так называе­мое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 177), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи.

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (zmin), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при ?w равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до ha = 0,8m; hf = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

Теперь обратимся к изложению основной теоремы зацепления: общая нормаль (линия зацепления NN) к сопряженным профилям зубьев делит межосевое расстояние ( ?w= О1О2) на отрезки (О1Р и 02Р), обратно пропор­циональные угловым скоростям (w1 и w2). Если положение точки Р (полю­са зацепления) неизменно в любой момент зацепления, то передаточное от­ношение — отношение частоты вращения ведущего колеса к частоте враще­ния ведомого — будет постоянным.

4.3. Основные элементы зубчатых зацеплений. При изменении осевого расстояния ?w = О1О2 пары зубчатых колес будет меняться и положение по­люса зацепления Р на линии центров, а следовательно, и величина диаметров начальных окружностей, то есть у пары сопряженных зубчатых колес может быть бесчисленное множество начальных окружностей. Следует отметить, что понятие начальные окружности относится лишь к паре со­пряженных зубчатых колес. Для отдельно взятого зубчатого колеса нельзя говорить о начальной окружности.

Читайте так же:
Как проверить фазировку мультиметром

Если заменить одно из колес зубчатой рейкой, то для каждого зубчатого колеса найдется только одна окружность, катящаяся по начальной прямой рейке без скольжения, — эта окружность называется делительной.

Примечание. В настоящей книге рассматриваются зубчатые передачи, у которых на­чальные и делительные окружности совпадают.

Так как у каждого зубчатого колеса имеется только одна делительная ок­ружность, то она и положена в основу определения основных параметров

зубчатой передачи по ГОСТ 16530- 83 и ГОСТ 16531-83 (рис. 178)

Основные параметры зубчатых колес:

1. Делительными окружностя­ми пары зубчатых колес называ­ются соприкасающиеся окружно­сти, катящиеся одна по другой без скольжения. Эти окружности, на­ходясь в зацеплении (в передаче), являются сопряженными. На чер­тежах диаметр делительной ок­ружности обозначают буквой d.

2. Окружной шаг зубьев Рt — расстояние (мм) между одноимен­ными профильными поверхностя­ми соседних зубьев. Шаг зубьев, как нетрудно представить, равен делительной окружности, разде­ленной на число зубьев z.

3. Длина делительной окруж­ности. Модуль. Длину делитель­ной окружности можно выразить через диаметр и число зубьев: Пd = Pt • r. Отсюда диаметр делитель­ной окружности d = (Рt • z)/П.

Отношение Pt/П называется модулем зубчатого зацепления и обозначается буквой т. Тогда диаметр дели­тельной окружности можно выразить через модуль и число зубьев d = m • z. Отсюда m = d/z.

Значение модулей для всех передач — вели­чина стандартизированная.

Для понимания зависимости между вели­чинами Рt т и d приведена схема на рис. 178, II, где условно показано размещение всех зубь­ев 2 колеса по диаметру ее делительной окруж­ности в виде зубчатой рейки.

4. Высота делительной головки зуба ha — расстояние между делительной окружностью колеса и окружностью вершин зубьев.

5. Высота делительной ножки зуба hf — расстояние между делительной окружностью колеса и окружностью впадин.

6. Высота зуба h — расстояние между ок­ружностями вершин зубьев и впадин цилинд­рического зубчатого колеса h = ha + hf..

7. Диаметр окружности вершин зубьев da — диаметр окружности, ограничивающей вершины головок зубьев.

8. Диаметр окружности впадин зубьев df — диаметр окружности, прохо­дящей через основания впадин зубьев.

При конструировании механизма конструктор рассчитывает величину модуля т для зубчатой передачи и, округлив, подбирает модуль по таблице стандартизированных величин. Затем он определяет величины остальных геометрических элементов зубчатого колеса.

Зубчатые передачи с зацеплением M.Л. Новикова

В этом зацепле­нии профиль зубьев выполняется не по эвольвенте, а по дуге окружности или по кривой, близкой к ней (рис. 179).

При зацеплении выпуклые зубья одного из колес контактируют с вогнуты­ми зубьями другого. Поэтому площадь соприкосновения одного зуба с другим в передаче Новикова значительно больше, чем в эвольвентных передачах. Касание сопряженных профилей теоретически происходит в точке, поэтому данный вид зацепления называют точечным.

При одинаковых с эвольвентным зацеплением параметрах точечная систе­ма зацепления с круговым профилем зуба обеспечивает увеличение контакт­ной прочности, что в свою очередь позволяет повысить нагрузочную способ­ность передачи в 2. 3 раза по сравнению с эвольвентной. Взаимодействие зу­бьев в сравниваемых передачах также различно: в эвольвентном зацеплении преобладает скольжение, а в зацеплении Новикова — качение. Это создает благоприятные условия для увеличения масляного слоя между зубьями, уменьшения потерь на трение и увеличения сопротивления заеданию.

К достоинствам зацепления Новикова относятся возможность примене­ния его во всех видах зубчатых передач: с параллельными, пересекающи­мися и скрещивающимися осями колес, с внешним и внутренним зацепле­нием, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector