Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СТРОЧНАЯ РАЗВЕРТКА — ПРОБЛЕМЫ ТРАНЗИСТОРОВ

СТРОЧНАЯ РАЗВЕРТКА — ПРОБЛЕМЫ ТРАНЗИСТОРОВ

Некачественные транзисторы.
Проблемы с пайками.
Проблемы режимов выходного каскада.
Неисправности драйвера.
Обрывы коллекторных емкостей.
Витковые ТДКС и ОС.
Неисправности ИИП.

Например:
При диагностике проблем драйвера СР на трансформаторах я ориентируюсь на наличие (без картинки на экране )вертикальной складки по центру экрана, или на пологую форму фронта импульсов, на первичной обмотке.

Некачественные транзисторы.
=============================
На эту тему все ссылаются. А как их распознать? Предлагаю завести список признаков левачины, который бы постоянно пополнялся. Прежде всего внешних признаков. Проверить на доброкачественность в лабе можно, даже не надо чтоб спецом ты был обалденным. Но ведь решение-то принимается при покупке. А вот внешний осмотр отсеет, думаю, более половины, предлагаемой туфты, была бы инфа.

Проблемы с пайками.
=============================
Извечная проблема. В строке не так много контактов. А пайки трескаются прежде всего на толстых ногах деталей. На пропайку толстых ног уходит обычно 1-3 минуты. Тем более, что это следует делать даже если причина не в них.

Проблемы режимов выходного каскада.
====================================
А вот это не понял. Там режим ключевой, и при любом другом ХОТ сдохнет, даже если к нему кулер азотовый приделать.
Другое дело что там иногда сопры в базу вешают, которые могут в номинале увеличиться. Ох нехорошо это. Я обычно меряю Б-Э у ХОТа и если там порядка 1 Ома, успокаиваюсь, пока.

Неисправности драйвера.
=====================
Тут я, извините, кроме дохлых транзисторов и порваных резюков(по питанию) ничего не встречал. Правда бывали треснувшие пайки, но сколько ж можно.
Гнусное место — проходной электролит в базу раскачки. Эта падла может вызывать и разогрев основного и внезапный выход оного в тираж без всяких предисловий.

Обрывы коллекторных емкостей.
===========================
Встречал один раз за 15 лет практики. Нарушение пайки, да, не раз! Но чтоб внутри порвалась, спасибо, экий случай был лишь раз. Да и то там , к счастью в параллель ещё один стоял, так что обошлось без микровзрывов. Это конечно же о верхнем кондёре(если их два). А нижние-то рвутся зачастую, но это другая тема.

Витковые ТДКС и ОС
==================
Об этом к Роттору.
Одно скажу, дохлую ОС не видал. А ТДКС проверял явным выжиганием или заменой на любой близкий. Чтоб ХОТ подох от КЗ в ТДКС не верю. От ОСы, верю, может быть, но теоретически(см. чуть выше).

Неисправности ИИП.
====================
Ну-у тут как повезёт. У меня как-то Айва 1402 вразнос ударилась. При номинальном выходе 117В давала такого жару, что лампочка на 220В сгорала. Повесил две посл-но — горели ярко. Напруга на них оказалась за 300В. Ёмкостя вспучились и на выходе питания и во вторичках ТДКСа в том числе и видеоусилительная(эта вообще петардой закинулась). ХОТ сдох только на третье включение(включения длились по 3сек примерно). Памятник ему. До сих пор жалею что не запомнил его имя.

Проверка головки Epson

В статье обсуждаем, как проверить головку Epson на короткое замыкание. А также почему проверка печатающей головки важна при ремонте принтера Epson.

Часто после промывки головки Epson или после залития шлейфа печатающей головки принтера Epson принтер перестает включаться. При ремонте такой неисправности нужно восстановить контакты шлейфа головки, вычистить и просушить разъем шлейфа головки, отремонтировать или заменить основную плату управления.

Читайте так же:
Как выбрать хорошую светодиодную лампочку

Если МФУ Epson не включается, то скорее всего сгорела основная плата управления (транзисторы, драйвер, предохранитель). Обычно плата горит из-за замыкания в печатающей головке. Если просто поменять плату, то, скорее всего, она опять сгорит.

Поэтому очень важно проверить головку Epson и как?

проверка головки Epson FA04000 FA04010

Покажем, как проверить головку FA04000/FA04010 на пригодность посте устранения короткого замыкания в шлейфе и чистки разъема головки. Эта головка одна из самых популярных и используется во многих домашних МФУ и принтерах Epson:

  • Epson L110, L120, L130, L132, L210, L220, L222, L300, L310, L350, L355, L362, L365, L366, L455, L456, L550, L555, L565, L566
  • WF-2010, WF-2510, WF-2520, WF-2530,WF-2540, WF-2630
  • Epson XP-302, XP-303, XP-305, XP-306, XP-312, XP-313, XP-322, XP-323, XP-332, XP-405, XP-406, XP-413, XP-420, XP-423, XP-432

И эта самая популярная головка Epson, но именно она хуже всего защищена от попадания жидкости на контакты. Разъем полностью открыт и расположен ближе всего к печатающей поверхности и парковке. Если кто-то делает «бутерброд» для чистки головки, то рискует залить разъем. При протечке картриджей или СНПЧ чернила тоже попадают на этот разъем и выводят принтер из строя. Как в Epson умудрились сделать такую конструкцию одному богу известно. Но страдают все пользователи.

Считаем контакты справа налево у шлейфа.

Как проверить головку Epson на замыкание

Как проверить головку Epson на замыкание

Для проверки сначала вынимаем шлейф головки из платы управления, поворачиваем контактами к себе. Начинаем отсчет слева, самый левый контакт первый.

В исправной головке 7 контактов соединены между собой, это земля.

Замкнутые контакты на шлейфе в исправной головке:

Если другие контакты замкнуты, такую головку нельзя использовать, потому что сгорит главная плата. А именно, транзисторы, предохранитель, микросхема драйвера, управляющая мощными транзисторами.

Контакты головки 1-2-3-5-7-9-11-12-13-16-17-19-20 можно проверить более точно. Большинство из них прозваниваются как диоды с определенным падением напряжения. Для прозвонки землю нужно соединить с плюсом тестера, например, + на 4 контакт.

Если КЗ нет, то на свой страх можно использовать эту головку. Однако у головок Epson есть неприятная особенность. Вроде бы рабочая головка может немного поработать, распечатать несколько страниц, а затем сгореть, выведя из строя основную плату.

Но этот метод хотя бы что-то. Он позволяет отбраковать хотя бы часть неисправных головок.

2.6.6. Отказы полупроводниковых приборов и их проверка

Отказы полупроводниковых приборов часто связаны с пробоем, когда прибор проводит ток в обратном направлении. В основе этого явления лежит пробой р-n перехода в монокристаллической структуре, составляющей основу прибора. Существует несколько разновидностей пробоя р-n перехода.

Тепловой пробой происходит в результате тепловой ионизации атомов полупроводника и местного перегрева структуры.

Лавинный пробой происходит в результате ударной ионизации атомов полупроводника неосновными носителями в области объемного заряда.

Зенеровский пробой происходит в результате перехода валентных электронов из валентной зоны в зону проводимости. При этом происходит разрушение кристаллической решетки в области объемного заряда электрическим полем.

Поверхностный пробой происходит в местах выхода р-n перехода на поверхность полупроводника. Он обусловлен увеличением напряженности поля объемного заряда в связи с искажением поля поверхностными зарядами, ухудшением свойств среды у поверхности полупроводника.

Читайте так же:
Как опрессовывать интернет кабель

Практически действуют несколько видов пробоя одновременно.

Нарушение вентильных свойств приборов может также происходить при различных перенапряжениях, при перегрузках по току и вызванных ими тепловых перегрузках.

Для увеличения пропускаемого тока безопасного перегрева применяется охлаждение приборов. Охлаждение предусматривается для силовых диодов и тиристоров в энергетике и для мощных диодов, транзисторов и тиристоров в электронике. Охлаждение может быть воздушное, водяное и испарительное.

Воздушное охлаждение осуществляется путем присоединения к прибору теплостока, или радиатора. Радиаторы могут быть медными или алюминиевыми. Применяется в основном резьбовое соединение радиатора с прибором.

Большое значение имеет проблема контакта прибора с радиатором. При этом должно быть плотное затягивание резьбы, но без повреждения резьбы и поверхностей.

В случае применения алюминия для радиаторов проблема контакта заключается в том, что имеется большая электрохимическая разность потенциалов медь—алюминий — около 1, 8 В. Попадание влаги в место контакта вызывает коррозию алюминия, поэтому применяется гальваническое покрытие основания вентиля.

Водяное охлаждение осуществляется присоединением приборов к контуру с водой, например, через полую шину.

Испарительное охлаждение осуществляется присоединением прибора к контуру, где жидкость испаряется и потом конденсируется.

Ясно, что без охлаждения, если оно предусмотрено конструкцией, полупроводниковый прибор не может обеспечить необходимый режим работы и выйдет из строя.

Кроме указанных причин, отказы полупроводниковых приборов могут быть обусловлены обрывами и перегоранием выводов, наружным пробоем между выводами, растрескиванием кристаллов и другими причинами.

Иногда выход из строя прибора можно определить по внешнему виду, если он обгорел, разрушился, обгорели провода. Но не всегда признаки выражены явно, поэтому нужно пользоваться приборами. Рассмотрим проверку некоторых полупроводниковых приборов и других элементов аппаратуры с помощью измерительных приборов.

С помощью омметра можно измерить прямое и обратное сопротивления постоянному току. Чем меньше прямое сопротивление и больше обратное сопротивление, тем лучше диод. Прямое сопротивление должно быть не больше примерно 200 Ом, а обратное не меньше 500 кОм. Следует иметь в виду, что если прямое сопротивление около 0, а обратное — около оо, то в первом случае имеется пробой, а во втором — обрыв выводов или нарушение структуры. Сопротивление диода переменному току меньше прямого сопротивления и зависит от положения рабочей точки.

Транзисторы

Как известно, транзистор состоит из двух переходов, каждый из которых обладает свойствами диода, поэтому проверить транзистор можно как диод. С помощью омметра можно проверить сопротивление между эмиттером и базой и коллектором и базой в прямом и обратном направлении.

Если транзистор исправен, то прямые сопротивления составляют величину порядка 30. 50 Ом, а обратные — 0, 5. 2 МОм.

Но недостаточно измерить только величины сопротивлений переходов, чтобы сделать вывод о работоспособности транзистора. Желательно измерить обратный ток коллектора, обратный ток эмиттера и ориентировочное значение коэффициента усиления по току. Есть специальные приборы для измерения этих параметров транзисторов, например, прибор ТЛ-4М.

Пригодность транзистора определяется сравнением полученных при измерении данных с данными, указанными в паспорте транзистора.

При измерениях параметров отдельного транзистора можно выявить обрывы электродов и замыкания в транзисторах,

но это же можно сделать и при измерениях в схемах с транзисторами. При этом нужно иметь в виду, что применяемый измерительный прибор должен обладать достаточно большим внутренним сопротивлением.

Читайте так же:
Как пользоваться балеринкой по кафелю видео

При измерениях можно сделать следующие выводы.

При обрыве цепи базы напряжения базы и эмиттера отсутствуют, напряжение коллектора повышено.

При обрыве цепи эмиттера напряжение коллектора повышено, напряжение базы почти нормальное, напряжение на эмиттере приблизительно равно напряжению базы.

При обрыве цепи коллектора напряжения на всех электродах транзистора уменьшаются.

При обрыве базы внутри транзистора напряжение базы близко к нормальному, напряжение эмиттера уменьшается, а напряжение коллектора повышается.

При замыкании эмиттера и коллектора внутри транзистора напряжение базы изменяется незначительно, напряжение эмиттера возрастает, напряжение коллектора падает.

Нужно учитывать, что транзистор может работать в режиме насыщения. Этот режим бывает тогда, когда сопротивление нагрузки в цепи коллектора велико и ток коллектора создает на нем падение напряжения, равное напряжению источника питания. В этом режиме потенциалы всех электродов транзистора одинаковы. Данный режим используется в импульсных устройствах, а для усилителей опасен.

Параметры и характеристики транзисторов зависят от температуры окружающей среды, стабильности нагрузки, условий теплоотвода. Все эти факторы изменяют температуру транзистора. При повышении температуры возможен выход транзистора из строя и неизбежное изменение параметров схемы. Большую температурную чувствительность транзистора можно объяснить следующим.

Электропроводность германия и кремния, из которых изготовляют транзисторы, зависит от температуры. При увеличении температуры нарушается электрическое равновесие, увеличивается эмиттерный и коллекторный ток, что увеличивает мощность, рассеиваемую на коллекторе, и температуру коллектора, вызывая увеличение обратного тока коллектора. При этом может быть равновесие или транзистор выйдет из строя. Это зависит от условий охлаждения, от окружающей температуры и величины сопротивления в цепи коллектора, ограничивающего нарастание коллекторного тока. Следует помнить, что при большом сопротивлении в цепи коллектора транзистор входит в режим насыщения и перестает быть усилителем.

Второй момент, увеличивающий чувствительность транзистора к температуре, состоит в том, что прямая проводимость участка эмиттер—база увеличивается с ростом температуры. Это явление вызывает увеличение тока эмиттера.

Иногда имеет место самопроизвольное изменение параметров транзисторов независимо от изменений окружающей среды.

Неисправность транзистора в схеме — явление редкое и может быть вызвано его перегревом при плохом теплоотводе или при пайке, или нарушением режимов работы схемы.

Перед заменой транзистора нужно детально его проверить, а при выходе из строя транзистора проверить другие детали, входящие в схему, от которых зависит его работа, так как выход их из строя может быть причиной выхода из строя транзистора.

Для замены нужно брать транзистор такого же типа или равноценный. Перед установкой его нужно проверить описанными методами. Расположение выводов нужно определять по прилагаемому паспорту или по справочнику.

Для пайки транзисторов желательно иметь низковольтный паяльник на 6 или 12 В, присоединяемый через понижающий трансформатор, мощностью около 40 Вт. Можно пользоваться и обычным паяльником, но нужно сначала его нагреть, а потом отключить и паять.

Выводы транзистора, если позволяет его конструкция, нужно оставлять не короче 15 мм, изгибать их не ближе 10 мм от корпуса, изгиб должен быть плавным.

Температура нагрева контактного слоя транзистора не должна превышать 75 С, поэтому для отвода тепла при пайке выводы у корпуса нужно держать плоскогубцами или пинцетом. Паяльник должен быть возможно дальше от транзистора, пайку нужно заканчивать быстрей. Жало паяльника должно быть зачищено и покрыто припоем, который должен быть легкоплавким.

Читайте так же:
Какого цвета провод фазы в двухжильном проводе

Желательно применение пистолетных паяльников, которые включаются только во время пайки.

Интегральные микросхемы (ИМС)

Отказы ИМС могут быть связаны с физико-химическими процессами внутри полупроводника, с теми же процессами на поверхности полупроводника и обусловлены состоянием контактных соединений.

Первая группа отказов обусловлена структурными дефектами — дислокациями, микротрещинами — внутри полупроводника. Эти дефекты могут с течением времени развиваться под воздействием температурных и механических влияний и изменять характеристики микросхемы, приводя к отказам.

Вторая группа отказов связана с накоплением на поверхности полупроводника двуокиси кремния, а в объеме, близком к поверхности, зарядов, изменяющих состояние р-n переходов, и появление поверхностных каналов. В результате этого происходит увеличение токов утечки, отсутствие насыщения вольт-амперной характеристики перехода коллектор—база, омическое шунтирование эмиттера с коллектором, снижение обратного пробивного напряжения на коллекторе, уменьшение коэффициента усиления по току, омическое шунтирование эмиттера с базой, увеличение шумов.

В ИМС применяется металлизированная разводка между отдельными элементами с соединением алюминиевых контактных площадок с внешними выводами с помощью золотых проводников, привариваемых к контактным площадкам и наружным выводам. Отказы связаны с нарушением соединений этих проводников и металлической разводки из-за механических повреждений или малой толщины пленки алюминия. Нарушения соединений могут вызвать перегрев в этих местах, что ведет к коррозии или расплавлению металла.

Нарушение электрической цепи и появление отказов может произойти по причине образования диэлектрической пленки на границе раздела алюминия и кремния или образования гидрата окиси алюминия на металлизированной разводки, при попадании влаги внутрь корпуса ИМС.

Отказы могут быть также из-за нарушения контакта золотых проводников с контактными площадками микросхемы и внешними выводами корпуса.

Внешним проявлением ухудшений состояния ИМС является увеличение обратного тока коллекторного перехода за счет появления тока утечки.

Надежность ИМС можно повысить за счет улучшения технологии их производства.

Вышедшие из строя микросхемы, как правило, подлежат замене. Заменять ИМС нужно на такую же, но можно и на микросхему сходного типа, электрическая схема которой подходит для данного устройства. Если микросхемы впаяны в печатные платы, то при их замене нужно соблюдать следующие правила.

Паяльник должен быть небольшого размера, мощностью не более 40 Вт, с температурой нагрева жала не более 200 С, с насадкой. Насадка имеет два широких жала, которые прижимаются к рядам припаиваемых выводов микросхемы. Она навинчивается на резьбу на жале паяльника. Припой должен быть с низкой температурой плавления, количество его при пайке должно быть минимальным. Пайка должна производится несколько секунд при отключенном питании паяльника.

Нельзя производить необоснованный замен деталей в схеме, содержащей ИМС, так как это может вывести ее из строя.

Как определить сгоревший транзистор

Сгорел строчный транзистор? Не все так просто.

По статистике, выход из строя выходного транзистора строчной развертки относится к одной из наиболее часто встречающейся неисправности в телевизорах. Практически, после блока питания, строчная развертка является основным участком, на котором рассеивается наибольшая мощность. Хорошо, когда ремонт заканчивается банальной заменой строчного транзистора. За частую приходится сталкиваться с тем, что строчный транзистор после замены, сразу или спустя некоторое время, снова выходит из строя. Ниже, я хочу рассмотреть причины, из-за которых приходится сталкиваться с подобной ситуацией. Прежде всего, перед заменой строчного транзистора, необходимо проверить режимы блока питания. Естественно режимы проверяются под нагрузкой. Достаточно вместо вышедшего из строя транзистора, “подвесить” лампочку мощностью 70 W, после чего проверить напряжения которые появляются на выходе блока питания в рабочем режиме. Если напряжения больше нормы, нужно начинать с ремонта блока питания, проверив в первую очередь цепи стабилизации. Хочу напомнить, что если телевизор и будет работать при завышенных напряжениях питания, то в этом случае он будет являться источником повышенного радиационного излучения. Трубка телевизора будет аналогом рентгеновского аппарата на дому у клиента.

Читайте так же:
Как размягчить резиновую прокладку в домашних условиях

Теперь рассмотрим случай, когда после замены строчного транзистора, сразу или через непродолжительное время он снова выходит из строя. Здесь, необходимо обратить внимание на следующее. Греется ли перед выходом из строя транзистор или нет. Если транзистор греется, то это говорит о том, что нагрузка на него больше чем положено. В данном случае неисправны, могут быть как строчный трансформатор, так и цепи нагруженные на него. Можно не брать во внимание цепи, которые запитываются вторичными напряжениями, формируемыми на строчном транзисторе. Дело в том, что перед каждым диодом, который выпрямляет то или иное напряжение, обычно ставится перемычка предохранитель, или низкоомное сопротивление которые перегорают в случае перегрузки в цепи. Хотя обратите внимание, может у Вас именно тот вторчермет, где этого нету.

В первую очередь необходимо проверить сам строчный трансформатор или ТДКС. В литературе описано много способов проверки, но все они требуют наличие осциллографа. Это крайне неудобно, если ремонт происходит на дому у заказчика. Есть простой способ, описанный на моем сайте http:teleremont.narod.ru. Вкратце, он заключается в том, что вместо подозреваемого трансформатора впаиваем две ножки трансформатора ТВС-110ПЦ15, девятую и двенадцатую, вместо обмотки через которую подается напряжение на транзистор. Включаем телевизор, и если он включился, на трансформаторе появилось высокое напряжение, а строчный транзистор перестал греться, то с большой степенью вероятности можно утверждать что сгорел подозреваемый ТДКС (при условии что его обвязка исправна).

Здесь все просто. Сложнее когда транзистор не греется, а просто после некоторого времени работы перегорает. Причина здесь кроется, чаще всего, в холодных пайках в цепях, через которые поступают строчные импульсы на базу транзистора. Особенно необходимо обратить внимание на согласующий трансформатор драйвера строчной развертки, включенного в цепь транзистора выходного каскада строчной развертки. Во время работы телевизора происходит разогрев деталей внутри телевизора. При нагреве, как известно, происходит расширение материалов. В результате этого, там, где в холодном аппарате все было нормально, в прогревшимся возникают разрывы цепей. И все бы нечего, но возникает в момент разрыва, так называемый дребезг контактов. Помните как в старых калькуляторах, нажимая один раз, на клавишу с цифрой, в итоге на дисплее выскакивает несколько. Примерно то же самое происходит и здесь. Вместо одного импульса поступает на базу транзистора несколько. В телевизорах, где строчные импульсы формируются в микросхемах, работа которых зависит от кварцевого резонатора, подключенного к ним, нужно пропаять и резонатор.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector