Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дедовский; способ подключения трехфазного электродвигателя в однофазную сеть с помощью лампочки

«Дедовский» способ подключения трехфазного электродвигателя в однофазную сеть с помощью лампочки

Самый простой способ подключения трёхфазного электродвигателя к однофазной сети 220В с помощью лампочки: подробное описание + видео.

Приветствую! Как известно, для подключения трехфазного электродвигателя в однофазную сеть, необходимо обеспечить смещение фазы. Это можно сделать, подсоединив к обмоткам электродвигателя, пусковой конденсатор или обычную лампочку накаливания.

Сначала рассмотрим способ подключения с использованием конденсатора.

Трехфазный электродвигатель имеет 3 обмотки, поэтому из него выходит 6 проводов по 2 на каждую. Из них 3 имеют один цвет изоляции, остальные 3 — другой. Нужно смотать вместе любой пучок с одним цветом изоляции и заизолировать скрутку. Далее к любым двум из оставшихся 3-х проводов — подключается двухжильный провод с вилкой.

Нужно подключить к оставшемуся проводу контакт конденсатора. Его второй контакт присоединяется к любой из двух скруток. После этого двигатель будет запускаться. В зависимости от того, подключен второй конец конденсатора к фазе или нулю, ротор будет вращаться за или против часовой стрелки. Обязательно при использовании конденсатора перед ним устанавливается пусковая кнопка, так как он должен срабатывать только в момент запуска.

подключение трехфазного электродвигателя в однофазную сеть с помощью конденсатора

Подключение трехфазного двигателя с лампочкой вместо конденсатора

Трёхфазный электродвигатель в однофазной сети, можно запустить по аналогичной схеме, но используя вместо конденсатора обычную лампочку накаливания.

Она создаст сдвиг фазы, за счет чего якорь двигателя также сможет раскрутиться. При таком способе, смещаются магнитные потоки при разности падения ЭДС на разных обмотках, а результирующая амплитуд магнитного потока двух подключенных катушек в сеть и одной с лампочкой смещенной через поток якоря и создают толчок к вращению.

подключение трехфазного электродвигателя в однофазную сеть с помощью лампочки

Этот способ дешевле первого, так как лампочка стоит копейки в сравнении с конденсатором.

Вот видео, где показан способ запуска трёхфазного двигателя с помощью лампочки:

Включение 3-х фазного двигателя в однофазную сеть

Среди разных методов пуска трехфазных электродвигателей в однофазную сеть, более обычный базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Нужная мощность развиваемая движком в данном случае составляет 50…60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, к примеру, с двойной секцией короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует дать предпочтение движкам серий А, АО, АО2, АПН, УАД и др.

Для обычной работы электродвигателя с конденсаторным запуском нужно, чтоб емкость применяемого конденсатора изменялась зависимо от числа оборотов. На практике это условие выполнить достаточно трудно, потому употребляют двухступенчатое управление движком. При пуске мотора подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

1.2. Расчет характеристик и частей электродвигателя.

Если, к примеру, в паспорте электродвигателя обозначено напряжение его питания 220/380, то движок включают в однофазную сеть по схеме, представленной на рис. 1

Схема включения трехфазного электродвигателя в сеть 220 В

С р – рабочий конденсатор;
С п – пусковой конденсатор;
П1 – пакетный выключатель

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после чего нужно сразу надавить кнопку “Разгон”. После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется методом переключения фазы на его обмотке переключателем SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток мотора в “ треугольник” определяется по формуле:

, где
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток в А;
U -напряжение в сети, В

А в случае соединения обмоток мотора в “звезду” определяется по формуле:

, где
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток в А;
U -напряжение в сети, В

Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из последующего выражения:

, где
Р – мощность мотора в Вт, обозначенная в его паспорте;
h – КПД;
cos j – коэффициент мощности;
U -напряжение в сети, В

Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии краткосрочного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением более 450 В. Для большей надежности электролитические конденсаторы соединяют поочередно, соединяя меж собой их минусовые выводы, и шунтируют диодами (рис. 2)

Схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.

Читайте так же:
Как добывают уран в россии

Общая емкость соединенных конденсаторов составит (С1+С2)/2.

На практике величину емкостей рабочих и пусковых конденсаторов выбирают зависимо от мощности мотора по табл. 1

Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя зависимо от его мощности при включении в сеть 220 В.

Мощность трехфазного мотора, кВтМалая емкость рабочего конденсатора Ср, мкФМалая емкость пускового конденсатора Ср, мкФ
0,4
0,6
0,8
1,1
1,5
2,2
40
60
80
100
150
230
80
120
160
200
250
300

Необходимо подчеркнуть, что у электродвигателя с конденсаторным запуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20…30 % превосходящий номинальный. В связи с этим, если движок нередко используется в недогруженном режиме либо вхолостую, то в данном случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель тормознул, тогда для его пуска опять подключают пусковой конденсатор, сняв нагрузку полностью либо снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу либо с маленькой нагрузкой. Для включения, к примеру, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В данном случае электродвигатель уверенно запускается при маленький нагрузке на валу.

1.3. Переносной универсальный блок для запуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В.

Для пуска электродвигателей разных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)

Схема переносного универсального блока для запуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (переключатель SA1 замкнут) и собственной контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Сразу с этим 3-я контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона мотора переключателем SA1 отключают пусковой конденсатор С1. Остановка мотора осуществляется нажатием на кнопку SB2.

1.3.1. Детали.

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве тумблера SA1 используется переключатель Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Пусковое устройство смонтировано в железном корпусе размером 170х140х50 мм (рис. 4)

1 – корпус
2 – ручка для переноски
3 – сигнальная лампа
4 – переключатель отключения пускового конденсатора
5 – кнопки “Запуск” и “Стоп”
6 – доработанная электровилка
7 – панель с гнездами разъема

На верхней панели корпуса размещены кнопки “Запуск” и “Стоп” – сигнальная лампа и переключатель для отключения пускового конденсатора. На фронтальной панели корпуса устройства находится разъем для подключения электродвигателя.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматом (рис.5)

Схема пускового устройства с автоматическим отключением пускового конденсатора.

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 само блокируется при помощи собственной контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку “Запуск” держат нажатой до полного разгона мотора, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку “Стоп”. В улучшенном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 либо ему схожее.

2. Внедрение электролитических конденсаторов в схемах пуска электродвигателей.

При включении трехфазных асинхронных электродвигателей в однофазную сеть, обычно используют простые бумажные конденсаторы. Но практика показала, что вместо массивных бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют наименьшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного конденсатора дана на рис. 6

Схема задмены бумажного конденсатора (а) электролитическим (б, в).

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением вдвое наименьшим, чем для обычных конденсаторов той же емкости. К примеру, если в схеме для однофазной сети напряжением 220 В употребляется бумажный конденсатор на напряжение 400 В, то при его подмене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов схожи и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Читайте так же:
Как правильно работать с мультиметром видео
2.1. Включение трехфазного мотора в однофазовую сеть с внедрением электролитических конденсаторов.

Схема включения трехфазного мотора в однофазную сеть с внедрением электролитических конденсаторов приведена на рис.7.

Схема включения трехфазного мотора в однофазовую сеть с помощью электролитических конденсаторов.

В приведенной схеме, SA1 – тумблер направления вращения мотора, SB1 – кнопка разгона мотора, электролитические конденсаторы С1 и С3 используются для запуска мотора, С2 и С4 – во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше создавать при помощи токоизмерительных клещей. Определяют токи в точках А, В, С и достигает равенства токов в этих точках методом ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном движке в том режиме, в каком подразумевается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с оборотным очень допустимым напряжением более 300 В. Наибольший прямой ток диода находится в зависимости от мощности мотора. Для электродвигателей мощностью до 1 кВт подходят диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности мотора от 1 кВт до 2 кВт необходимо взять большие диоды с подходящим прямым током, либо поставить несколько меньших диодов параллельно, установив их на радиаторы.

Следует обратить ВНИМАНИЕ на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

3. Включение мощных трехфазных движков в однофазную сеть.

Конденсаторная схема включения трехфазных движков в однофазовую сеть позволяет получить от мотора менее 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого очевидно недостаточно для работы электрорубанка либо электрической пилы, которые обязаны иметь мощность 1,5…2 кВт. Неувязка в этом случае может быть решена внедрением электродвигателя большей мощности, к примеру, с мощностью 3…4 кВт. Такового типа движки рассчитаны на напряжение 380 В, их обмотки соединены «звездой» и в клеммной коробке содержится всего 3 вывода. Включение такового мотора в сеть 220 В приводит к понижению номинальной мощности мотора в 3 раза и на 40 % при работе в однофазовой сети. Такое понижение мощности делает движок неприменимым для работы, но может быть применено для раскрутки ротора вхолостую либо с малой нагрузкой. Практика указывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в данном случае пусковые токи не превосходят 20 А.

3.1. Доработка трехфазного мотора.

Более просто можно выполнить перевод мощного трехфазного мотора в рабочий режим, если переработать его на однофазовый режим работы, получая при всем этом 50 % номинальной мощности. Переключение мотора в однофазный режим требует его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса мотора подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса мотора. Находят место соединения 3-х обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, подходящим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой либо поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После чего крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в данном случае будет иметь вид, показанный на рис. 8.

Схема коммутации обмоток трехфазного электродвигателя для включения в однофазовую сеть.

Во время разгона мотора используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с движком типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.

3.1.1. Детали.

В схеме коммутации обмоток электродвигателя, в качестве коммутационного устройства SA1 следует использовать пакетный тумблер на рабочий ток более 16 А, к примеру, тумблер типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Тумблер SA2 может быть любого типа, но на ток более 16 А. Если реверс мотора не требуется, то этот тумблер SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность мотора к перегрузкам. Если нагрузка на валу достигнет половины мощности мотора, то может произойти понижение скорости вращения вала прямо до полной его остановки. В данном случае снимается нагрузка с вала мотора. Тумблер переводится поначалу в положение «Разгон», а позже в положение «Работа» и продолжают последующую работу.

Читайте так же:
Как подключить спутниковую приставку к телевизору

Подключение трёхфазного двигателя к однофазной сети

Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения в однофазную сеть двигатель с 3 фазами

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три – по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).

Обращение с треугольником для подключения трёхфазного двигателя на 220В

Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки, ложащиеся на ротор.

Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током. Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя.

Заставить двигатель крутиться в обратном направлении

График распределения фаз

Три фазы напряжения 380 вольт

При подключении на три фазы смена направления вращения вала обеспечивается правильной коммутацией сигнала. Применяются специальные контакторы (три штуки). 1 на каждую фазу. В нашем случае коммутации подлежит всего одна цепь. Причем (руководствуясь утверждениями гуру) достаточно обменять местами любые два провода. Будь то питание, место стыковки конденсатора. Проверим правило прежде выдачи напутствия читателям. Результаты демонстрирует второй рисунок, схематично приводящий эпюры, показывающие распределение фаз указанного случая.

Изготавливая эпюры, предполагали: обмотка С соединена последовательно конденсатору, дающему напряжению положительный прирост фазы. Согласно векторной диаграмме, для сохранения баланса на обмотке С должен быть отрицательный знак относительно основного напряжения. С другой стороны конденсатор, катушка В соединены параллельно. Одна ветвь обеспечивают напряжению положительный прирост (конденсатор), другая – току. Сродни параллельному колебательному контуру, токи ветвей текут практически в противоположную сторону. Учитывая сказанное, приняли закон изменения синусоиды противофазно относительно обмотки С.

Читайте так же:
К какой группе металлов сплавов относится магний

Эпюры показывают: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Прошлым обзором показывали аналогичным контекстом: вращение идет иным направлением. Получается, действительно при смене полярности питания вал вращается в противоположную сторону. Не будем рисовать распределение магнитных полей, считаем излишним повторяться.

Точнее подобные вещи позволят просчитывать специальные компьютерные программы. Объяснение дали на пальцах. Получилось, что практики правы: поменяв полярность питания, направление движения вала обратим противоположно. Наверняка аналогичное утверждение годится случаю включения конденсатора ветвью другой обмотки. Жаждущим подробных графиков рекомендуем изучать специализированные программные пакеты наподобие бесплатной Electronics Workbench. В приложении проставите угодное число контрольных точек, отследите законы изменения токов, напряжений. Любителям поиздеваться над своим мозгом будет возможность просмотра спектра сигналов.

Потрудитесь правильно задать индуктивности обмоток. Разумеется, влияние вносит нагрузка, препятствующая запуску. Учесть потери подобными программами сложно. Практики рекомендуют избегать заострять внимание указанной точилкой, подбирать номиналы конденсаторов (эмпирическим) опытным путем. Таким образом, точная схема подключения трехфазного двигателя определена конструкцией, предполагаемым целевым назначением. Допустим, токарный станок будет отличаться от хлеборушки развивающимися нагрузками.

Пусковой конденсатор трехфазного двигателя

Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.

Избегайте помогать двигателю запуститься рукой, как демонстрируют “бывалые” мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.

Трёхфазный двигатель с пусковым конденсатором

Трехфазный двигатель с пусковым конденсатором

Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.

Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения. Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает. В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза.

И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.

Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно. Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт. Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.

На этом говорим “до свидания” и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.

  • alt=»Подключение однофазного двигателя» width=»120″ height=»120″ />Подключение однофазного двигателя
  • alt=»Подключение электродвигателя 380 на 220 Вольт с конденсатором» width=»120″ height=»120″ />Подключение электродвигателя 380 на 220 Вольт с конденсатором
  • alt=»Подключение электромагнитного замка» width=»120″ height=»120″ />Подключение электромагнитного замка
  • alt=»Подключение УЗО без заземления» width=»120″ height=»120″ />Подключение УЗО без заземления
Читайте так же:
Как подключить цифровой тюнер к телевизору

Здравствуйте, вы уверены в правильности подключения обмоток (с1-с6,с3-с4,с2-с5 или может с1-с6,с2-с4,с3-с5). Спасибо.

Подключение трёхфазного двигателя к однофазной сети: рекомендации по схеме соединения через конденсатор

Такая задача, как подключение трёхфазного двигателя к однофазной сети, на практике решается довольно спокойно. Требуется мотор на 380 В подсоединить к цепи на 220 вольт и произвести запуск в работу. Поначалу требование кажется невыполнимым: вместо трёх всего одна фаза, вольтаж меньше. Решение лежит в особенностях переменного тока и устройства асинхронных машин с короткозамкнутым ротором.

Асинхронные электрические машины

Самый распространённый тип. Такое название получили потому, что обороты ротора меньше, чем частота вращения магнитного поля статора — они не совпадают или асинхронны. Скорость вращения ротора зависит от частоты питания цепи и количества пар полюсов статора: при стандартной частоте в 50 Гц при одной паре обороты меньше трёх тысяч в минуту, при двух — полутора тысяч, при трёх парах полюсов обмотки мотор выдаст меньше тысячи в минуту.

Расщепление фаз

Если требуется включение трёхфазного двигателя в однофазную сеть нужно решить вопрос с недостающими фазами. Когда используется подключение трёхфазного двигателя к трёхфазной сети, то всё понято:

  • На начало каждого сектора обмотки подаётся своя фаза.
  • При соединении звездой концы секторов обмотки собраны вместе и замкнуты на ноль.
  • При соединении треугольником конец одного сектора обмотки соединён с началом другого.

Успешная схема подключения трёхфазного электродвигателя на 220 В подразумевает наличие какого-то приспособления для получения необходимых характеристик питания цепи.

Вопрос расщепления фазы без введения в цепь ёмкостного сопротивления, которое, совместно с индуктивностью обмотки, создаёт колебательный контур, сдвигающий напряжение питания, решить нельзя. Повсюду используется схема подключения электродвигателя на 220 В через конденсатор.

Напряжение питания

На шильдике асинхронного двигателя могут указываться две цифры питающего напряжения 220/380 или просто одна — 380. Тут нужно разобраться с двумя типами значений напряжения питания в сети переменного тока:

  • Максимальное напряжение.
  • Действующее значение.

В каждой фазе стандартное максимальное значение составляет 380 В, но действующее значение будет иным — между нулём и фазой (соединение звездой) 220 В, а между фазами (соединение треугольником) — 380 В.

Изменение схемы подключения обмоток со звезды на треугольник решает вопрос, как подключить трёхфазный двигатель на 220.

Подбор конденсаторов

Для стабильной работы требуются неполярные конденсаторы с рабочим напряжением не менее 400 В. Для подсчёта необходимой ёмкости используются специальные формулы или онлайн-калькулятор. Они учитывают тип соединения обмоток, коэффициент мощности, мощность двигателя. При запуске под небольшой нагрузкой или без неё пусковое оборудование не требуется. При пуске нагруженного электродвигателя нужно кратковременное включение пусковых конденсаторов. Можно попытаться собрать схему из того, что есть в наличии, без точного расчёта. Конденсаторы должны удовлетворять следующим условиям:

  • Ёмкость рабочих от 80 мкФ на 1 кВт мощности.
  • Ёмкость пусковых в 2−3 раза выше рабочих.

Правильность подбора конденсаторов контролируется по внешним признакам: стабильный запуск и чёткая работа без излишнего перегрева. По возможности стоит замерить рабочие токи секторов обмотки, в идеале они должны быть одинаковы.

Сборка схемы

Может осуществляться в различных вариантах. Без пусковых конденсаторов собираются обычные

трёхфазные асинхронные электродвигатели даже в заводских условиях и маркируются сразу как электродвигатели на двести двадцать вольт переменного тока для использования в быту. В домашних условиях можно сделать примерно так же, обычный наждачный круг не потребует дополнительных приспособлений. Чтобы запустить нагруженный электродвигатель, требуется кнопка для ввода и вывода пусковых конденсаторов. Изменение направления вращения или реверсивный пуск требует возможности переключения ёмкостной группы с одной секции обмотки на другую.

Начинать нужно с чтения информации на шильдике — на какое напряжение рассчитан этот двигатель. Тип соединения обмоток проверяется при вскрытии клеммной коробки, в ней должно быть не менее шести выводов — три начала и три конца. Если в наличии только три или четыре клеммы, мотор собран по схеме звезда. Переключение на треугольник потребует разборки корпуса и дополнительных знаний и квалификации, тут потребуется помощь специалиста.

Иногда бывает проще и дешевле предусмотреть аналог сцепления у автомобилей. Сделать механическое приспособление для подачи нагрузки на вал и не разрабатывать пусковую электрическую схему.

Достаточна проста ремённая передача с прижимным роликом, она позволяет контролировать запуск мотора и убережёт его от механической перегрузки.

В любом случае стоит продумать различные варианты и наличие доступного оборудования и приспособлений.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector