Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование напряжения трансформатора

Регулирование напряжения трансформатора

Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.

Большинство силовых трансформаторов [1] оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора.

Содержание

Применение [ править | править код ]

В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа витков обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так как
U 2 = U 1 w 2 w 1 =U_<1> over w_<1>>>

В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.

Переключение без возбуждения [ править | править код ]

Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформации в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторах средней и большой мощности с помощью четырёх ответвлений по 2,5 % на каждое [2] .

Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом, ввиду большего количества витков, отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, на стороне высшего напряжения величина силы тока меньше, и переключатель получается более компактным [3] . При этом надо заметить, что у понижающих трансформаторов (питание подводится со стороны обмотки высшего напряжения) регулирование напряжения будет сопровождаться изменением магнитного потока в магнитопроводе. В нормальном режиме это изменение незначительно.

Регулирование напряжения переключением числа витков обмотки со стороны питания и со стороны нагрузки имеет разнохарактерный вид: при регулировании напряжения изменением числа витков на стороне нагрузки для повышения напряжения необходимо увеличить число витков (поскольку напряжение пропорционально числу витков), но при регулировании со стороны питания для повышения напряжения на нагрузке необходимо уменьшить число витков (это связано с тем, что напряжение сети уравновешивается ЭДС первичной обмотки, и для уменьшения последней необходимо уменьшить число витков).

При переключении ответвлений обмотки с отключением трансформатора, переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки [3] .

Переключатели числа витков без возбуждения [ править | править код ]

Переключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при отключенном трансформаторе. Именно этот тип переключателя имеет второе, жаргонное название — «анцапфа» (нем. Anzapfen — отводить, отбирать) [4] .

Для уменьшения и стабильности переходного сопротивления контактов на них поддерживается давление с помощью специального пружинного приспособления, которое при определённых ситуациях может вызывать вибрацию. Если переключатель числа витков без возбуждения находится в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с окислением материала в точке контакта (поскольку в качестве материала контакта чаще применяется медь или сплавы на её основе (латунь), окислы которых имеют достаточно высокое электрическое сопротивление и химическую стойкость) и постепенным разогревом контакта, который приводит к разложению масла и осаждению пиролитического углерода на контактах, что ещё более увеличивает контактное сопротивление и снижает степень охлаждения, приводя к местным перегревам. Данный процесс может происходить лавинообразно. В конечном итоге наступает неконтролируемая ситуация, приводящая к срабатыванию газовой защиты (из-за газов, появляющихся при разложения масла в точках местных перегревов) или даже к поверхностному пробою по осевшим на изоляции твёрдым продуктам разложения масла. Персонал предприятия,обслуживающий трансформаторы, оборудованные переключателем коэффициентом трансформации ПБВ (переключатель без возбуждения), должен не менее чем 2 раза в год перед наступлением зимнего максимума нагрузки и летнего минимума нагрузки произвести проверку правильности установки коэффициента трансформации [5] . При этом необходимо, чтобы переключение числа витков проводилась в отключенном от сети состоянии, с переводом переключателя во все положения — данный цикл должен быть повторен несколько раз для удаления окисных плёнок с поверхности контактов и возвратом его обратно в заданное положение [6] . Для контроля качества контактов производится измерение сопротивления обмоток постоянному току. «Трансформаторы силовые транспортирование, разгрузка, хранение, монтаж и ввод в эксплуатацию СПО и И Союзтехэнерго, Москва» 1981г. Вышеуказанные операции проводятся также если трансформатор был отключён в течение большого промежутка времени и вновь вводится в эксплуатацию.

Регулирование под нагрузкой [ править | править код ]

Данный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле. Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления. Уже в 1905—1920 годах были разработаны устройства для регулирования напряжения на трансформаторах под нагрузкой (РПН). Принцип регулирования напряжения таких устройств также основан на изменении числа витков. Сложность выполнения таких устройств заключается:

  • в невозможности простого разрыва цепи при изменении числа витков, как это делается в ПБВ (это связано с возникновением электрической дуги большой мощности и больших перенапряжений из-за действия ЭДС индукции) что приведёт к выходу из строя трансформатора;
  • использовании кратковременных (на время переключения ступени напряжения) замыканий части витков обмоток.
Читайте так же:
Как называется распылитель краски

Для ограничения тока в короткозамкнутых обмотках необходимо использовать токоограничивающие сопротивления. В качестве токоограничивающего сопротивления используются индуктивности (реакторы) и резисторы.

РПН с токоограничивающими реакторами [ править | править код ]

Каждая ступень РПН с токоограничивающим реактором состоит из двух контакторов и одного реактора. При этом реактор состоит из двух обмоток, к каждой из них подключены контакторы. В нормальном режиме оба контактора замыкают один и тот же контакт и через эти оба параллельно включённых контактора и реактор проходит ток обмотки. Во время операции переключения один из контакторов переключается на другой контакт (соответствующий необходимой ступени регулирования). При этом часть обмотки трансформатора замыкается накоротко — ток в этой цепи ограничивается реактором. Далее на этот же контакт переводится другой контактор, переводя трансформатор на другую ступень регулирования — на этом операция регулирования заканчивается.

РПН с токоограничивающими резисторами [ править | править код ]

Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янсена (Janssen) по имени изобретателя. Принцип Янсена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор.

Применение реактора является альтернативой принципу Янсена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части.

В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это служит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке.

С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной.

Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания.

В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном.

Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора.

Автоматическое регулирование напряжения [ править | править код ]

Переключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в линиях, соединённых с трансформатором. Совсем необязательно, что целью всегда будет поддержание постоянного вторичного напряжения на трансформаторе. Чаще всего падения напряжения происходят во внешней сети — особенно это проявляется для дальних и мощных нагрузок. Для поддержания номинального напряжения на дальних потребителях может потребоваться увеличение напряжения на вторичной обмотке трансформатора. Система управления РПН относится к релейной защите и автоматике станции — переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычно функции согласования коэффициентов трансформации между различными трансформаторами внутри одной и той же станции относятся к системе РПН. При соединении трансформаторов в параллель их переключатели числа витков должны двигаться синхронно. Для этого один из трансформаторов выбирается ведущим, а другие — как ведомыми, их системы управления РПН следят за изменением коэффициента трансформатора ведущего трансформатора. Обычно синхронным переключением числа витков добиваются исключения токов циркуляции между обмотками параллельных трансформаторов (из-за разницы вторичных напряжений параллельных трансформаторов) хотя на практике в момент действия РПН циркуляционные токи всё же возникают из-за рассогласования при переключении, однако это допускается в определённых пределах.

Последовательные регулировочные трансформаторы (Вольтодобавочные трансформаторы) [ править | править код ]

Для регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы (вольтодобавочные), которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже.

Как увеличить мощность с помощью трансформатора?

Представьте себе повышающий трансформатор. Входные параметры мы пока что рассматривать не будем. А вот выходные!? Повышающие трансформаторы бывают двух типов:

  1. Повышают напряжение но пропорционально уменьшается ток, мощность на выходе та же что и на входе.
  2. Повышают ток и пропорционально уменьшают напряжение мощность на выходе опять такая же что и на входе.

А теперь давайте представим трансформатор у которого две выходные обмотки: одна повышает ток и состоит из 2-3 витков, а вторая повышает напряжение и состоит из нескольких сотен витков.

Вопрос: Каким образом можно объединить высокий ток с высоким напряжением чтобы получилось добиться чтобы в результате получилось увеличение мощности, т.е. высокий ток умножить на высокое напряжение получаем высокую мощность. Достаточно ли просто последовательно или параллельно соединить вторичные обмотки такого трансформатора или же нужно придумать что то хитрее?

Например, получится ли взять ещё один трансформатор, но теперь у него две первичные обмотки. На первой например 5 витков и на неё подаётся высокий ток и на второй 5 витков, но на неё подаётся высокое напряжение. Вторичная обмотка состоит из 20 витков. Получится ли на вторичной обмотке получить объединённую повышенную мощность с двух первичных обмоток посредством не прямой, а магнитной связи, которая присутствует в трансформаторе? Надеюсь что вы внимательно прочитаете мой вопрос и вникнете в его суть перед тем как ответить, вопрос на самом деле интересный. Всем спасибо большое заранее, с нетерпением буду ждать ответов.

Читайте так же:
Мини термопластавтомат как бизнес

Любопытство моё было вызвано вопросом существует ли в принципе способ увеличения мощности, ни отдельных составляющих электричества, а мощности в целом. И не обязательно через трансформатор, может быть существуют какие-либо другие способы?

8 комментариев

Вы неправильно понимаете суть работы трансформатора. Трансформатор преобразует определенную мощность электричества в требуемое значение напряжения. Мощность одна, но при этом может быть разное соотношение тока и напряжения. Вот например, трансформатор 110/10кВ на первичной обмотке 110кВ имеет номинальный ток 200 А, а на вторичной обмотке 10 кВ имеет ток 3600 А, при этом номинальная мощность трансформатора одинаковая что при 110кВ, что при 6кВ – 40 МВА. При этом трансформатор не увеличил мощность – сколько пришло электричества, столько и вышло (если не учитывать небольшие потери, которые есть в любом трансформаторе).
Почитайте внимательно принцип работы трансформатора и о том, что такое мощность, что такое ток и напряжение.
На первичную обмотку подается одно напряжение, в магнитопроводе наводится магнитный поток этой обмоткой, наведенный магнитный поток создает напряжение во вторичной обмотке и на ней появляется напряжение в зависимости от количества витков. Если соединить эти обмотки, то трансформатор просто выйдет из строя – будет короткое замыкание.
Нет такого понятия – подается большой ток. На обмотку подается напряжение, а далее в зависимости от характеристик трансформатора это напряжение преобразуется. А ток протекает, когда к трансформатору подключена нагрузка. Больше нагрузка – больший ток. Если трансформатор понижающий, то при подключении нагрузки на вторичной обмотке ток одного значения, а на первичной обмотке ток ниже, но при этом мощность одинаковая. Не может быть такого, чтобы на входе одна была мощность, а на выходе другая.
В трансформаторе может быть две вторичные обмотки, но первичная всегда одна. Первичная генерирует магнитный поток, а далее этот магнитный поток может быть преобразован в требуемое значение напряжения хоть двумя, хоть тремя обмотками. Еще раз повторюсь – прочитайте внимательно принцип работы трансформатора и об основных электрических величинах.

И еще. Мощность — это энергия, которая вырабатывается на электростанциях. Например, сколько угля или газа сожгли — столько и мощности отдано в электросеть. Вся мощность в наших сетях генерируется на электростанциях. Существуют альтернативные способы получения электроэнергии — солнечные батареи, ветрогенераторы. Мощность просто так не появляется и нельзя её получить без затрат другого вида энергии — топлива на электростанциях либо энергии воды, солнца или ветра.

Советы электрика

Регулирование напряжения у силовых трансформаторов

Приветствую вас, читатель моего сайта ceshka.ru!

В этой статье я хочу рассказать вам как регулируется напряжение у силового трансформатора 110/10 кВ- под нагрузкой.

Для тех кто вообще не в теме объясняю о чем вообще идет речь.

Электроэнегрия от электростанции (АЭС, ТЭЦ, ГРЭС и т.п.) передается по опорам воздушных линий на многие сотни километров к подстанции (я буду вести речь о подстанции 110 000 Вольт), где установлены понижающие трансформаторы – очень большие и очень мощные.

Эти трансформаторы понижают напряжение (в моем примере до 10 000 Вольт) и передают электроэнергию дальше, но уже на более короткое расстояние- в пределах 10-40км до следующего понижающего трансформатора, который преобразует уже высокое напряжение 10 кВ в низкое трехфазное напряжение 400 Вольт, которое и идет по проводам к нам в дома.

Так вот, к трансформатору 110/10 кВ, установленному на подстанции, присоединяется очень много нагрузки- это может быть целый сельский район или часть большого города.

Нагрузка в течении дня и в течении времен года постоянно меняется и очень сильно.

Например в зимний период многие сельские жители обогреваются электрокотлами , поэтому потребляемый ток гораздо больше чем летом.

Или есть утренние и вечерние часы максимума нагрузок когда люди просыпаются или наоборот приходят с работы, включают электроприборы- потребление электроэнергии сильно возрастает. В течении дня нагрузка снижается и иногда даже в разы меньше чем утром или вечером.

Что происходит с понижающим трансформатором при увеличении нагрузки

А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.

На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.

Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).

На самом деле это совсем не так.

В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ

А так как коэффициент трансформации у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением.

А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ…

И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.

И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))

Почему изменяется напряжение

А изменяется напряжение от нагрузки, от того, какая мощность подключена к трансформатору.

Кто дружит с физикой тот знает- чем больше мощность, тем больше ток. В свою очередь увеличение значения электрического тока приводит к тому, что увеличивается падение напряжения в проводниках электрического тока.

Это обмотки трансформатора, провода воздушной линии электропередачи, силовые кабеля и т.п.- на них происходит основное падение напряжения.

Что это такое падение напряжения

Говоря упрощенно и что бы было понятнее- это энегрия(причем активная!) выделяемая в виде тепла.

Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм подключить одн офазный электротел мощностью 9 кВт с потребляемым током 9000_220=41 ампер, то провод очень сильно будет греться.

Читайте так же:
Стиральные машины каких фирм надежные

Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току.

По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода.

Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер.

Тогда на проводе напряжение составит U=R*I= 41 Вольт

Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт

А это целый электрообогреватель мощностью 1,7 кВт.

Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен.

В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер.

Из всего вышесказанного следует:

При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и потери энергии в проводах

Другими словами- часть напряжения и энергии до наших розеток просто не доходит, а выделяется в воздух в виде тепла…

А сейчас самое важное!

Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение.

То есть повышают напряжение выше 10 000 Вольт- до 11, а то и больше киловольт. Тогда даже и если часть энергии “теряется” в проводах, у нас в квартирах и домах напряжение находится в пределах нормы- около 220 Вольт.

Как регулируется напряжение

Как можно изменять вторичное напряжение на понижающем трансформаторе? Можно изменять напряжение, подводимое к первичной обмотке- тогда на вторичной оно будет изменяться прямо пропорционально.

Но этот вариант не подходит, так как у трансформаторов, подключенных к сети 110 кВ разная загруженность- у одних может быть 100% нагруженность, у других- 20-50% и т.д.

И при этом способе напряжение на выходе будет меняться одновременно на всех- и там где надо и там где не надо…

А трансформаторов подключено не просто много- а очень много!

Поэтому применяют другой способ.

Напряжение регулируется изменением коэффициента трансформации самого трансформатора

Изменяется количество витков первичной обмотки трансформатора.

А почему именно в первичной?

В принципе можно было бы изменять и на вторичной обмотке- коэффициенту без разницы, он все равно будет изменяться, так как будет меняться соотношение витков первичной к вторичной обмотками.

Однако изменяют именно на высокой стороне- где выше напряжение. Почему?

Все очень просто. Где выше напряжение- там меньше величина электрического тока.

А так как регулировка напряжения происходит под нагрузкой- то есть трансформатор не отключают, то при изменении витков обмотки- при коммутации- появляется электрическая дуга в месте переключения контактов.

А чем больше ток— тем больше дуга, а эту дугу надо обязательно гасить…

Кстати значения тока между первичной и вторичной обмотками различается очень значительно. Например на вторичной нагрузке ток в 300 ампер вполне допустим, а для первичной максимальный ток является 25-30 ампер.

Думаю не надо объяснять что переключать контакты при токе в 300 ампер гораздо сложнее чем при 30, согласитесь)))

А где находятся эти контакты? В баке трансформатора сделаны отводы от первичной обмотки для изменения коэффициента трансформации и выведены в отдельный отсек, где и происходит переключение с помощью специального механизма.

Снаружи на баке трансформатора прикреплен привод этого механизма, называется он

Привод РПН

РПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д.

Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН контролируется автоматикой РПН.

Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение.

А у нас в доме- в розетке- 220)))

Автоматикой РПН управляют специальные электронные блоки:

В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки.

И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически.

Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта.

Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора.

Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история)))

Специально по этой теме я снял видео непосредственно с подстанции 110/10 кВ и предлагаю вам “вживую” посмотреть как регулируется напряжение на трансформаторе под нагрузкой!

О трансформаторе импульсном замолвите слово

Несмотря не то, что не так давно проскакивали довольно неплохо написанные статьи о расчете трансформатора импульсного источника питания, я предложу вашему вниманию свою методику, и не просто голую методику, а максимально прозрачное описание принципов, в ней использующихся.

Картинок не будет, будет около 18 несложных формул и много текста. Всех желающих приобщиться прошу на борт.

Я хочу поведать вам о том, как расчитать такого хитрого зверя, как импульсный трансформатор обратноходового источника питания. Обратноходовик, или FlyBack — это, наверное, самая популярная топология импульсного преобразователя. По моему мнению, в ИИП есть два очень важных и тонких момента — это трансформатор и петля обратной связи. В данной статье я хочу показать один из возможных наборов несложных математических уравнений, решая которые мы можем получить данные вполне реального трансформатора для флайбэка.

В интернете, в различных авторских статьях, или в AppNotes различных производетелей, можно найти различные методики расчета, которые зачастую максимально «сжаты», так, что из формул совершенно не понятно, как они получается. Я хочу сделать упор не на точность, а на максимальную наглядность и прозрачность производимых расчетов, так чтобы вы поняли, «почему так».

Далее постараюсь писать кратко и емко, так, чтобы вы смогли сесть и посчитать сразу после прочтения статьи. Эпюры напряжений и токов в обратноходовом источнике рисовать не буду, считаю, что вы достаточно подготовлены для того, что бы такие термины, как «индуктивность рассеяния», «отраженное напряжение», «пиковое значение тока через силовой ключ», «размагничивание магнитопровода» вам понятны.

Читайте так же:
Torx 12 граней как называется

Итак, считать будем трансформатор обратноходового источника питания, без корректора коэфициента мощности, как наиболее распространенный, да и «расчётка» моя пока только под него заточена.

Отдельно сделаю примечание, что подразумевается т.н. квазирезонансный режим работы преобразователя, когда накачка энергии в трансформатор начинается сразу после полного размагничивания магнитопровода. Т.е. т.н. «коэффициент безразрывности тока» =1, т.е. как только вся энергия вытекла через вторичную обмотку(и рассеялась в снабберной цепи), сразу включаем ключ и накачиваем снова. Такой режим в последнее время очень популярен в обратноходовых источниках питания, т.к. позволяет чуток поднять КПД.

Заранее оговорюсь — нижеприведенная методика весьма груба, но она «железобетонно» работает, многократно проверена на реальных трансформаторах в реальных источниках питания.

Для начала скачайте расчетку, откройте, пробегитесь глазами. В нее уже «вбиты» значения для расчета трансформатора источника питания, с выходной мощностью 100Вт.

Расчетка: к сожалению, по какой-то неведомой мне причине, публичная ссылка не отображается.
Возможно публикация публичных ссылок противоречит правилам. Надеюсь на то, что модераторы услышат этот крик души и снизошлют на меня персональную настройку фильтра, а пока можете переписать в Эксель, или маткад, все нижеприводимые формулы и получить годный результат.

Итак, поехали. Для того, чтобы начать расчет нам потребуется задаться несколькими исходными параметрами (все они выделены зеленым цветом в расчетке), а именно:

1. Выходная мощность источника питания для которого делаем трансформатор (POUTmax).
2. Выходное напряжение источника (Uout)(1).
3. Выходное напряжение служебной обмотки (Ubias)(2).
4. Минимальное напряжение питающей сети (UACmin)(3).
5. Максимальное напряжение в сети (UACmax)(3).
6. Уровень пульсаций на фильтрующем конденсаторе сетевого выпрямителя (Urpl)(4).
7. Ожидаемый КПД трансформатора (берите 0,85 и не прогадаете) (ŋ).
8. Частота работы преобразователя (5).
9. Пиковое значение тока протекающего через ключ коммутирующий первичную обмотку (ILPRpeak) (6).

(1) Если выходные напряжения достаточно низкие- учитывайте прямое падение напряжения на диоде.
(2) В подавляющем большинстве конструкций источников питания, требуется третья обмотка, от которой будет питаться управляющая микросхема.
(3) Всегда берите с запасом, т.е. если указан диапазон 180-264, берите от 160 до 280.
(4) Этот параметр зачастую можно только угадать, берите 10% от постоянной составляющей на нем и не ошибетесь, по факту полученного рабочего прототипа «подрихтуете» расчет.
(5) Частота к преобразователях с ожиданием размагничивания сердечника- плавающая, берем «с потолка» такую, которую хотим получить при полной нагрузке.
(6) Я надеюсь вы в курсе, что форма тока треугольная, что коммутирует ключ, что такое ключ и т.п.

Итак, первая формула:
Начнем с определения индуктивности первичной обмотки, Lpr.

Для упрощения я выкину КПД, и множитель 1000, который нужен только для приведения результата к микроГенри от Генри, получится нижеследующее уравнение:

На первый взгляд совершенно непонятно как так получается. Давайте попробуем ее преобразовать. Перенеся множители справа-налево, получим.

Преобразуем правую часть, получим:

Итак, в левой части у нас энергия содержащаяся в индуктивности (учебник физики, если не понятно). В правой части имеем мощность которая расходуется за период работы преобразователя. Т.е. энергия запасенная в индуктивности первичной обмотки (на этапе накачки, от начала периода до размыкания ключа) равна мощности передаваемой в нагрузку за весь период T (от начала накачки, до полного исчерпания энергии в трансформаторе и начала нового импульса).

В установившемся режиме то, что закачали в трансформатор из сети, должно равняться тому, что слили в нагрузку. Т.е. все рассуждения предполагают, что наш источник уже работает, а не стартует.

Оставим-же пока эту формулу (1), мы потом воспользуемся ею в расчётке, я лишь хотел продемонстрировать как она так получается.
Теперь о параметрах. Присмотримся к формуле. Зафиксировав (выбрав на свое усмотрение) три из четырех неизвестных, мы можем получить значение четвертой.

Мощность (POUTmax), мы уже задали.

Частота, ее можно просто выбрать по своему желанию. Не мудрствуя лукаво тыкнем скажем 50кГц и не проиграем. Лезть за 150кГц не стоит, так как потери на переключение станут неоправданно высокими, да еще скинэффект, не нужно это нам во флайбэке.

Пиковое значение тока через первичную обмотку, и одновременно ключ- ILPRPeak, это параметр на нервах которого мы будем играть. Выбирая его значение ILPRPeak, мы изменяем Lpr, а вместе с ней еще много чего другого. В моей расчетке будем менять ILPRpeak и наблюдать за другими ячейками таблицы, в которых будут находится результаты других формул. Опять-же, ближе к реальности, для 100Вт источника можно задаться для начала ILPRpeak= 3…4A.

Просто попробуйте подставить в ячейку различные числа, и вы увидите, как изменятся другие производные параметры. В частности, выбирая пиковый ток «первички», мы смотрим на «отраженное» напряжение, и исходим из соображений наличествующих у нас ключей. Так же этот параметр влияет на пиковое значение тока «вторички», что тоже важно, ибо во флайбэках токи имеют форму прямоугольного треугольника, и пиковые значения в разы превышают действующие, т.е. если ток нагрузки 5А, то пиковое может быть и 50, ориентируйтесь на наличествующие диоды и потери в меди обмотки.

Тут упрощать нечего, думаю понятно, что мы получаем самое худшее значение постоянного напряжения, с учетом просадки на буферном конденсаторе, что стоит за сетевым выпрямителем, или за ККМ.

В формуле (3) мы вычисляем, сколько времени должен быть открыт ключ, чтоб ток в индуктивности, при приложении к ней нашего самого худшего UDCmin вырос от нуля до желаемого ILPRpeak.

Частотой мы задались ранее, период посчитали в (4). На 1000 умножаем потому, что желаемую частоту мы записали в кГц а не в 1000-х Герц.

Оставшаяся часть периода, которая будет посвящена передаче энергии в нагрузку, вычисляется по формуле (5).

Максимальный коэффициент заполнения для худшего напряжения в сети и максимальной просадки на фильтрующем конденсаторе вычисляем в (6).

«Отраженное» напряжение. Наш трансформатор, хоть и обратноходовый, но таки трансформатор, а значит коэффициент трансформации к нему так-же применим. Если на нашей вторичной обмотке во время протекания тока через выпрямительный диод, апряжение (например) 12.7В, то через соотношение количества витков это напряжение трансформируется в первичную обмотку (ведь магнитный поток «омывает» одновременно все обмотки).

Формула (7), немного хитрая, попробуем ее «раскрутить». Получим:

Читайте так же:
Как подключить два светильника на один выключатель

(7.1) Демонстрирует один очень важный момент, называемый в народе «равенство вольт*секундных интервалов». Возможно справедливость утверждения (7.1) не очевидна, или не сразу понятна, пока используем полученное с помощью (7) численное значение как есть, в его правомерности не сомневайтесь.

Надеюсь вы хорошо понимаете, что на обратном ходу, первичная обмотка, для постоянного напряжения, что на фильтрующем конденсаторе- просто кусок проволоки, т.е. если наш фильтрующий конденсатор все еще заряжен до 310В, то при разомкнутом силовом ключе, протекании тока через вторичную обмотку, постоянка попросту «проходит» через первичку и прикладывается к ключу, но вместе с ней, к ключу добавляется еще отраженное напряжение. И самое печальное, что оно суммируется с постоянкой. И это без учета выброса от индуктивности рассеяния, имейте это ввиду, в расчетке данное обстоятельство специально выделено красным шрифтом.

Тогда (8) показывает, какое напряжение будет приложено к силовому ключу на обратном ходу. Можно сразу прибавить к максимальному напряжению, на которое расчитан ключ, еще сверху вольт этак 200 и не ошибетесь. Макетирование покажет реальную амплитуду выброса напряжения порожденного индуктивностью рассеяния.

Теперь можем посчитать коэффициент трансформации трансформатора, например таким образом:

Я называю этот коэффициент трансформации «обратным», т.к. считается он задом наперед. Теперь классический коэффициент трансформации, который можно получить:

Далее посчитаем максимальное напряжение, которое будет приложено к выпрямительному диоду на прямом ходу преобразователя. Думаю вы хорошо понимаете, что оно будет складываться из напряжения на фильтрующем конденсаторе нагрузки, которое в рабочем режиме, можно считать постоянным, и трансформированного, через коэффициент трансформации, напряжения приложенного к первичной обмотке.

И не забываем, что выбросы от паразитных индуктивностей обмоток трансформатора, действуют и на диод в т.ч. Если речь идет о источниках с высокими выходными напряжениями, берите запас по напряжению минимум 200В. Для низковольтных, как минимум 1.5, и внимательно смотрите осциллографом на выпрямитель.

Из (12) получаем индуктивность вторичной обмотки трансформатора. Правило которое используется в формуле гласит, что «индуктивности обмоток трансформатора соотносятся как квадраты их витков», т.к. выражение можно представить как:

Далее посчитаем пиковый ток вторичной обмотки. Готовьтесь получить тут достаточно большие цифры, потому, что это «обратноход», и ток у него во «вторичке» — треугольный, и пиковое значение может быть ощутимо больше тока нагрузки.

Данная формула преобразуется точно также как и первая формула для ILPRpeak.

В (14) вычисляется действующее значение тока через вторичную обмотку трансформатора. Обяснить почему корень из (1-Q)/3 я не могу, вероятно это можно объяснить построив эпюры и прибегнув к геометрии. Тут же прикинем и действующее значение тока первичной обмотки.

Итак, индуктивности, токи, частоты посчитали. А как выбрать магнитопровод, спросите вы, как расчитать немагнитный зазор? Для начала мы его «прикинем», основываясь на своем жизненном опыте, а «загнав» его параметры в расчетку, поглядев посчитанную индукцию, можно выбрать другой магнитопровод. Вот захотелось мне источник мощностью 100Вт, с выходным напряжением 12В. Беру я «с потолка» магнитопровод типоразмера PQ2620.

Из его Datasheet выписываю Ae, предполагаемый зазор, и Коэффициент индуктивности для данного зазора (в даташитах Epcos, часто приводится таблица со стандартными зазорами для данного магнитопровода, и значениях Al и эквивалентной проницаемости). Если-же данных о коэфициенте Al для желаемого вами зазора, нет, придется его(зазор) изготовить, намотать пробные 100 витков, и посчитать по простой формуле Al=√(L/N^2), где L- измеренное значение индуктивности на сердечнике с пропиленным вами зазором, N — количество витков, что вы набросали(рекомендую мотать пробных 100 витков).

Объяснять что Такое Ae, G, и Al не буду, предполагая, что вы и сами знаете, зачем нужен зазор в магнитопроводе, и что такое Al. Также в расчетку можно вписать эквивалентную проницаемость сердечника с зазором, но она там не используется, чисто для красоты). В формуле (16) считаем необходимое количество витков.

Один из самых важных параметров для трансформатора- пиковое значение потока магнитной индукции.

Превышать значение 0,3 я категорически не рекомендую, а 0,4 это уже катастрофа. Так совпало, что данный магнитопровод вроде как вполне подходит под наши нужды. Индукция меньше 0,3Тл, так и хочется его заложить под наши нужды. К сожалению, расчетка не содержит формул для расчета заполненности окна магнитопровода медью, поэтому дать по ней окончательный вердикт — нельзя.

Если же индукция больше 0,3Тл, можем или выбрать более крупный магнитопровод, или увеличить зазор. Увеличив зазор мы получим уже другое значение Al и соотв. значение потока индукции.

Вообще, жизненный опыт показывает, что лучше не лезть в зазоры более 1.5мм., ибо им свойственны свои паразитные явления, такие как выпучивание линий магнитного поля, разогрев витков находящихся вблизи зазора, до температур, при которых им может настать «хана», короче от 0.2мм до 1.5мм. Меньше 0.2- температурное расширение материала может существенно изменить параметры трансформатора. Больше 1.5мм — написал выше.

Выбирая магнитопровод, а именно сравнивая различные модели, только по поперечному сечению керна (Ae), можно упустить из виду то, что длина магнитной линии тоже влияет на Al при том-же сечении, и зазоре.

Например магнитопровод PQ2620 имеет площадь сечения керна 122мм.кв, а ETD34 только 97мм.кв., но длины магнитных линий этих магнитопроводов различны, и через ETD34 можно так-же успешно прокачать 100Вт, как и через PQ2620. Я к тому, что берите и подставляйте в расчетку все феррриты, что находятся вблизи тех размеров, что, как вам кажется, могут прокачать желаемую мощность.
После расчета магнитной индукции в расчетке идет расчет количества витков вторичной обмотки и вспомогательной обмотки, на них специально останавливаться не буду, методология та-же, что и ранее.

Я надеюсь написанное выше будет вам полезно. Разработка ИИП это огромный пласт прикладной науки, и сия «расчетка» лишь маленький листик одного из талмудов, в котором собран весь опыт человечества, но она крайне полезна в прикладном плане, для разработки простеньких «флайбэков».

Моя «расчетка» (а на самом деле не моя, а унаследованная от идейного вдохновителя) довольно примитивный инструмент, поэтому я могу порекомендовать использовать сборник программ Владимира Денисенко, что легко находятся через поисковик. Тех, кто «рубит» в «силовой» теме, и имеет что сказать- вэлкам в коменты. Любая критика приветствуется!

Что непонятно — спрашивайте, я дополню статью более детальными объяснениями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector