Как проверить трансформатор мультиметром: особенности прямого и косвенного методов проверки
Как проверить трансформатор мультиметром: особенности прямого и косвенного методов проверки
Электрический трансформатор — довольно распространенное устройство, используемое в быту для решения целого ряда задач.
И в нем могут случаться поломки, выявить которые поможет прибор для измерения параметров электротока — мультиметр.
Из этой статьи вы узнаете, как проверить трансформатор тока мультиметром (прозвонить), и каких правил следует придерживаться при этом.
Возможные неисправности
Как известно, любой трансформатор состоит из следующих компонентов:
- первичная и вторичная катушки (вторичных может быть несколько);
- сердечник или магнитопровод;
- корпус.
Таким образом, перечень возможных поломок довольно ограничен:
- Поврежден сердечник.
- Перегорел провод в какой-либо из обмоток.
- Пробита изоляция, вследствие чего имеется электрический контакт между витками в катушке (межвитковое замыкание) либо между катушкой и корпусом.
- Изношены выводы катушек или контакты.
Трансформатор тока Т-0,66 150/5а
Некоторые из дефектов определяются визуально, поэтому трансформатор в первую очередь нужно внимательно осмотреть. Вот на что при этом следует обращать внимание:
- трещины, сколы изоляции либо ее отсутствие;
- состояние болтовых соединений и клемм;
- вздутие заливки или ее вытекание;
- почернения на видимых поверхностях;
- обуглившаяся бумага;
- характерный запах горелого материала.
Если явных повреждений нет, следует проверить устройство на работоспособность при помощи приборов. Для этого нужно знать, к каким обмоткам относятся все его выводы. На преобразователях больших размеров данная информация может быть представлена в виде графического изображения.
Методы проверок трансформатора мультиметром
Прежде всего, следует проверить состояние изоляции трансформатора. Для этого мультиметр необходимо переключить в режим мегомметра. После этого замеряют сопротивление:
- между корпусом и каждой из обмоток;
- между обмотками попарно.
Напряжение, при котором должна осуществляться такая проверка, указывается в технической документации на трансформатор. К примеру, для большинства высоковольтных моделей замер сопротивления изоляции предписано проводить при напряжении 1 кВ.
Проверка прибора мультиметром
Требуемое значение сопротивления можно посмотреть в технической документации или в справочнике. Например, для тех же высоковольтных трансформаторов оно составляет не менее 1 мОм.
Данный тест не способен выявить межвитковые замыкания, а также изменения свойств материалов проводов и сердечника. Поэтому обязательно нужно проверить рабочие характеристики трансформатора, для чего применяют следующие методы:
Напряжение в 220 Вольт воспринимают далеко не все приборы. Трансформатор 220 на 12 Вольт понижает напряжение для возможности использования электроприборов.
Как проверить варистор мультиметром и для чего нужен варистор, читайте далее.
С правилами проверки напряжения в розетке мультиметром вы можете ознакомиться по ссылке.
Прямой метод (проверка схемы под нагрузкой)
Именно он первым приходит на ум: нужно замерять токи в первичной и вторичной обмотках работающего устройства, а затем путем деления их друг на друга определить фактический коэффициент трансформации. Если он соответствует паспортному — трансформатор исправен, если нет — нужно искать дефект. Этот коэффициент можно вычислить и самостоятельно, если известно напряжение, которое должен выдавать прибор.
К примеру, если на нем написано 220В/12В, то перед нами понижающий трансформатор, следовательно, ток во вторичной обмотке должен быть в 220/12 = 18,3 раза выше, чем в первичной (термин «понижающий» относится к напряжению).
Схема поверки однофазного трансформатора методом непосредственного измерения первичного и вторичного напряжений с использованием образцового трансформатора
Нагрузку к вторичной обмотке нужно подключать такую, чтобы в обмотках протекали токи не ниже 20% от номинальных значений. При включении будьте настороже: если раздастся треск, появится запах гари, либо вы увидите дым или искрение, прибор нужно сразу же отключить.
Если у тестируемого трансформатора несколько вторичных обмоток, то те из них, которые не подключены к нагрузке, должны быть закорочены. В разомкнутой вторичной катушке при подключении первичной к источнику переменного тока может появиться высокое напряжение, способное не только вывести из строя оборудование, но и убить человека.
Последовательное соединение обмоток трансформатора при помощи батарейки и мультиметра
Если речь идет о высоковольтном трансформаторе, то перед включением нужно проверить, не нуждается ли его сердечник в заземлении. Об этом говорит наличие специальной клеммы, помеченной литерой «З» или специальным значком.
Прямой метод проверки трансформатора позволяет со всей полнотой оценить состояние последнего. Однако, далеко не всегда имеется возможность включить трансформатор с нагрузкой и произвести все необходимые замеры.
Косвенный метод
В состав данного метода входят несколько тестов, каждый из которых отображает состояние прибора в каком-то одном аспекте. Следовательно, все эти тесты желательно проводить в совокупности.
Определение достоверности маркировки выводов обмоток
Для проведения этой проверки мультиметр нужно переключить в режим омметра. Далее нужно попарно «прозвонить» все имеющиеся выводы. Между теми из них, которые относятся к разным катушкам, сопротивление будет равным бесконечности. Если же мультиметр показывает какое-то конкретное значение, значит выводы принадлежат одной катушке.
Тут же можно сравнить замеренное сопротивление с приведенным в справочнике. Если имеет место расхождение более, чем на 50%, значит случилось межвитковое замыкание либо частичное разрушение провода.
Подключение трансформатора к мультиметру
Учтите, что на катушках с большой индуктивностью, то есть состоящих из значительного числа витков, цифровой мультиметр может ошибочно показывать завышенное сопротивление. Желательно в таких случаях пользоваться аналоговым прибором.
Проверять обмотки следует постоянным током, который трансформатор преобразовывать не может. При использовании переменного в других катушках будет наводиться ЭДС и вполне возможно, что она окажется достаточно высокой. Так, если на вторичную катушку понижающего трансформатора 220/12 В подать переменное напряжение всего в 20 В, то на выводах первичной появится напряжение в 367 В и при случайном касании их пользователь получит сильный удар током.
Далее нужно определить, какие выводы следует подключать к источнику тока, а какие — к нагрузке. Если известно, что трансформатор понижающий, то к источнику тока нужно подключать катушку с наибольшим числом витков и наибольшим сопротивлением. С повышающим трансформатором все обстоит наоборот.
Все способы измерения силы электрического тока
Но бывают модели, у которых среди вторичных катушек имеются как понижающие, так и повышающие. Тогда первичную катушку можно с определенной долей вероятности распознать по следующим признакам: выводы ее крепятся обычно в стороне от остальных, так же и катушка может находиться на каркасе в отдельной секции.
Возможно, кто-то из его участников имел дело с такими устройствами и может подробно рассказать, как его нужно подключать.
Если во вторичной катушке имеются промежуточные отводы, необходимо распознать ее начало и конец. Для этого нужно определить полярность выводов.
Определение полярности выводов обмоток
В роли измерителя следует использовать магнитоэлектрический амперметр или вольтметр, у которого полярность выводов известна. Прибор нужно подключить к вторичной катушке. Удобнее всего пользоваться теми моделями, у которых «ноль» расположен посредине шкалы, но за неимением такового подойдет и классический — с местоположением «нуля» слева.
Если вторичных катушек несколько, прочие нужно зашунтировать.
Проверка полярности фазных обмоток электрических машин переменного тока
Через первичную катушку нужно пропустить постоянный ток небольшой силы. На роль источника подойдет обычная батарейка, при этом в цепь между ней и катушкой нужно включить резистор — чтобы не получилось короткого замыкания. Таким резистором может послужить лампа накаливания.
Выключатель в цепь первичной катушки устанавливать не нужно: достаточно следя за стрелкой мультиметра замкнуть цепь, коснувшись проводом от лампы вывода катушки, и тут же разомкнуть ее.
При разнополярном подключении — влево.
В момент отключения питания будет наблюдаться противоположная картина: при однополярном подключении стрелка сдвинется влево, при разнополярном — вправо.
На приборе с «нулем» в начале шкалы движение стрелки влево сложнее заметить, так как она почти сразу отскакивает от ограничителя. Поэтому следить нужно внимательно.
По той же схеме проверяются полярности всех остальных катушек.
Мультиметр — очень нужный прибор для замера силы тока, который применяется для выявления неисправностей тех или иных приборов. Какой мультиметр лучше выбрать для домашнего использования — читайте полезные советы по выбору.
Инструкция по проверке диодов мультиметром представлена по ссылке.
Снятие характеристики намагничивания
Чтобы иметь возможность воспользоваться данным методом, нужно подготовиться загодя: пока трансформатор новый и заведомо исправный, снимают его так называемую вольт-амперную характеристику (ВАХ). Это график, отображающий зависимость напряжения на выводах вторичных катушек от величины протекающего в них тока намагничивания.
Схемы снятия характеристик намагничивания
Разомкнув цепь первичной катушки (чтобы результаты не искажались помехами от находящегося поблизости силового оборудования), через вторичную пропускают переменный ток различной силы, измеряя каждый раз напряжение на ее входе.
Мощности используемого для этого блока питания должно быть достаточно для насыщения магнитопровода, которое сопровождается уменьшением угла наклона кривой насыщения до нуля (горизонтальное положение).
Измерительные приборы должны относиться к электродинамической или электромагнитной системе.
По мере использования устройства нужно с определенной периодичностью снимать ВАХ и сравнивать ее с первоначальной. Снижение ее крутизны будет свидетельствовать о появлении межвиткового замыкания.
Видео на тему
Диагностика импульсного блока питания. Часть I, используемые определения
Введение.
Мы уже рассматривали классический вариант диагностики импульсного блока питания некоторые моменты мы сознательно опустили, для более простой подачи материала. Практика показала, что у части специалистов возникают вопросы даже после ознакомления с публикацией, постараемся исправить этот пробел. Материал является самостоятельным и строго ориентирован на ремонт блока питания с ШИМ UC3843 (3842,3844,3845). В качестве примера будем рассматривать уже рассмотренный блок питания D-Link JTA0302D-E (5В*2А) выполненного на ШИМ 3843 в виду его классического исполнения.
Схемотехника.
Хотя часть ремонтируемых блоков питания не имеют родных схем, большинство ремонтов блоков питания на ШИМ 3843 (3842,3844,3845) мы выполняем по нижеприведенной принципиальной электрической схеме.
Схема блока питания D-Link JTA0302D-E (5В*2А), такая схемотехника характерна для канонических вариантов схем.
Подобная схема хоть и не соответствует стандартам, но максимально приближена к каноническому варианту исполнения принципиальных электрических схем. Некоторые признаки указывают, что схема была срисована с уже готового блока питания, а значит так ее видит автор. Если бы эту схему рисовали мы, то получился бы несколько другой вариант, по которому проще ремонтировать, схема от немного другого блока питания, несколько сумбурно прорисованы цепи обратной связи, холодная и горячая земля, но все же по ней проще делать диагностику.
Схема блока питания D-Link 5В*2А, такая схемотехника характерна для наглядных пособий по ремонту.
Отличие этих двух схем в элементной базе небольшие, но есть серьёзные различия в исполнении, если первая схема ориентирована на ГОСТ, то вторая схема нарисована специалистом ранее ремонтировавшим подобный блок питания.
Терминология.
Так как материал рассчитан на специалиста, редко занимающегося ремонтом импульсных блоков питания, то поиск по сопутствующим ресурсам или ответы от более опытных коллег, иногда ставят в тупик, вместо того чтобы помочь в решении проблемы. Такое происходит от специфики терминологии используемой в среде специалистов при ремонте блоков питания. Стоит отметить терминология может меняться от региона к региону, например грифлик может называться снаббером, а пусковой конденсатор – конденсатором первого удара.
Схема блока питания D-Link 5В*2А, с небольшими корректировками, для удобства чтения.
Структурная блок схема блока питания D-Link 5В*2А
Что бы не было неоднозначности, конкретно пропишем каждые элементы блок схемы, функционал и особенности диагностики рассмотрим позже.
1.Входной фильтр
Предохранитель F1 (2.25А) тут возможно опечатка или неудачное сокращение, скорее всего имеется ввиду 2А*250В, по функционалу — не занимается фильтрацией, но мы его отнесли к цепям входного фильтра
Терморезистор TR(5 Ом) необходим для «мягкого пуска» блока питания в момент включения и хотя по функционалу — не занимается фильтрацией, мы его отнесли к цепям входного фильтра.
Х-конденсатор XC1 (100 pF*250B), тут стоит обратить внимание – это X конденсатор.
Дроссель L1 – как правило это проволочный дроссель на феррите (не пермаллой), выполненный в виде трансформатора.
2.Входной выпрямитель
Диодный мост DB1-DB4(1N4007)
Конденсатор входного выпрямителя С1(33мкф*400В)
3.Высокочастотный трансформатор
T1.1 Высоковольтная (первичная) обмотка
T1.2 Обмотка для питания ШИМ
T1.3 Низковольтная (вторичная) обмотка
4. Грифлик.
Резистор R1(39кОм) редко бывает в планарном исполнении, так как на нем рассеивается значительная мощность
Конденсатор С2(4700 пФ*2кВ) использование низковольтного конденсатора в этой цепи недопустимо.
Быстродействующий диод VD1(PS1010R) – не смотря на рабочее напряжение конденсатора 2кВ, рабочее напряжение этого диода обычно 1кВ, при хорошем токе в 1А.
5. Выходной выпрямитель.
Диод Шотки VD5-VD6 (SB340) использование диодов Шотки позволяет на малых мощностях обойтись без дополнительных элементов охлаждения.
Конденсаторы LowESR C9, C10 (680 мкФ*10В) использование обычных конденсаторов допустимо, но резко снижает ресурс блока питания, так как эти конденсаторы работают в очень жестком режиме.
Дроссель L2 выполняет двойную функцию является накопителем для конденсатора С20, а так же является элементом фильтра.
Конденсатор С20 (220мкФ*10В) – благодаря дросселю L2 работает в нормальном режиме и особых требований, кроме массогабаритных показателей, к этому конденсатору не предъявляется.
Резистор R21(220 Ом) – формально не является элементом выходного выпрямителя, а служит для быстрого разряда С9,С10, С20, L2.
6. Силовой ключ.
МОП транзистор с n-каналом VT1(P4NK60Z), полевой транзистор на работу с которым рассчитан ШИМ UC3843
7. Токовый датчик.
Резистор R2(1.5 Ом) не смотря на то, что рассеивает значительную мощность, встречается как в планарном так и проволочном исполнении. В случае планарного исполнения набирается путем параллельного соединения нескольких планарных резисторов.
Резистор R8 (300 Ом), R3(750кОм) и С4 (10нФ) мы не хотели добавлять эти элементы в раздел токовый датчик, так как они создают некоторую путаницу в терминологии, ведь под понятием токовый датчик подразумевается именно резистор R2(1.5 Ом) и только он, но слово из песни не выкинешь, так как формально эти элементы так же являются цепями токового датчика, мы вынуждены их упомянуть, тем самым создав некоторую путаницу в терминологии токового датчика.
8. Цепь запуска.
Резистор R4 (300кОм) не смотря на простоту один из самых сложных элементов блока питания, так именно он определяет возможные замены ШИМ на аналоги, именно он выглядит как неисправный элемент, так как он рассеивает значительные мощности, именно при замене этого резистора забывают посмотреть рабочее напряжение резистора, а ведь оно должно быть не менее 400 В, для примера, планарный резистор типоразмера 1206 имеет максимальное рабочее напряжение 250В.
9. Рабочее питание
T1.2 Обмотка для питания ШИМ
Резистор R9 (5.1 Ом) элемент интегрирующей цепи для гашения паразитных выбросов трансформатора, очень неоднозначный элемент – именно неудачный выбор (слишком большой номинал) этого элемента заставляет срываться блок питания на холостом ходу.
Выпрямительный диод VD2 (1N4148) – обыкновенный диод без всяких изысков.
ZD1 (BZX55C20) еще один неоднозначный элемент схемы, о нем мы поговорим попозже и рассмотрим подробнее, на данном этапе лишь укажем его характеристики 20В, 5 мА. Отметим только тот факт, что он доставляет много проблем начинающим ремонтникам.
10.Пусковой конденсатор.
Конденсатор С6 (47мкФ*25В) – без преувеличения можно назвать основным элементом импульсного блока питания. Косвенно, как только механик начинает видеть этот конденсатор только посмотрев на блок питания, можно говорить о квалификации этого ремонтника. Отметим – этот элемент всегда подлежит замене при любом ремонте импульсного блока питания, пренебрежение этой рекомендацией превращает ремонт в борьбу с ветряными мельницами.
11. ШИМ.
U2(UC3843) – не нуждается представлении, отметим только это самый простой в реализации и надежный в эксплуатации ШИМ для своего времени.
12. Драйвер силового ключа.
Резистор R5(150 Ом), рассматриваемая схема самый неудачный пример для рассматривания драйвера силового ключа, так как большинстве своем, драйвер имеет радикальное отличие от рассматриваемого, обычно это резистор номиналом 15-30 Ом.
13. Внешние цепи генератора.
Резистор R11(3кОм) и конденсатор С5(10нФ) задают частоту генерации.
14. Обратная связь.
Делитель на резисторах R22(5.25кОм) и R23(4.87 кОм)
Токоограничивающий резистор R17(470 Ом)
Оптопара гальванической развязки U1.1, U1.2
Регулируемый стабилитрон U3(KA431AZ)
Элементы коррекции цепи обратной связи конденсаторы С12 (1мкФ*50В), С3(10нФ)
Отдельно стоит отметить помехоподавляющий Y конденсатор YC2(2200пФ), но не столько из за его функционала, сколько благодаря ему можно (и нужно) отличать «горячую» и «холодную» землю.
Как выявить межвитковое в трансформаторе
Есть такой метод. В параллель к обмотке подключают определённую емкость и по полученному контуру бьют прямоугольным импульсом. Смотрят осциллографом на характер затухания собственных колебаний (звон). Если есть 5-6 периодов, значит контур высокодобротный, а добротность контура определяется в первую очередь добротностью индуктивности.
В настоящей статье автор знакомит читателей с несколькими способами проверки импульсных, разделительных и строчных трансформаторов. В статье приводится способ усовершенствования осциллографов С1-94, С1-112 и им подобных для более удобной диагностики трансформаторов.
При ремонте телевизоров, видеомагнитофонов и другой электронной техники очень часто возникает необходимость проверки трансформаторов.
Существует множество методов, позволяющих с определенной вероятностью отбраковать неисправные трансформаторы. В этой статье рассмотрены способы проверки трансформаторов, импульсных блоков питания, разделительных трансформаторов строчной развертки телевизоров и мониторов, а также трансформаторов строчной развертки (ТДКС).
Для проверки потребуется звуковой генератор с частотным диапазоном 20. 100 кГц и осциллограф. На первичную обмотку проверяемого трансформатора через конденсатор емкостью 0,1 . 1 мкФ подают синусоидальный сигнал амплитудой 5. 10 В. На вторичной обмотке наблюдают сигнал с помощью осциллографа. Если на каком-либо участке частотного диапазона удается получить неискаженную синусоиду, можно сделать вывод об исправности трансформатора. Если синусоидальный сигнал искажен, трансформатор неисправен.
Схема подключения показана на рис. 1, а форма наблюдаемых сигналов — на рис. 2, соответственно.
Для проверки трансформатора параллельно первичной обмотке подключаем конденсатор ёмкостью 0,01. 1 мкФ и подаем на обмотку сигнал амплитудой 5 10 В с генератора сигналов звуковой частоты. Меняя частоту генератора, пытаемся вызвать резонанс в получившемся параллельном колебательном контуре, контролируя амплитуду сигнала с помощью осциллографа. Если закоротить вторичную обмотку исправного трансформатора, колебания в контуре исчезнут. Из этого следует, что короткозамкнутые витки срывают резонанс в контуре. Следовательно, если в проверяемом трансформаторе есть короткозамкнутые витки, мы не сможем добиться резонанса ни на какой частоте.
Схема подключения показана на рис. 3.
Принцип проверки трансформатора тот же, только вместо параллельного используется последовательный контур. Если в трансформаторе есть короткозамкнутые витки, при частоте резонанса происходит резкий срыв колебаний, и достичь резонанса будет невозможно.
Схема подключения показана на рис 4.
СПОСОБ 4
Первые три способа больше подходят для проверки трансформаторов питания и разделительных трансформаторов, а оценить исправность трансформаторов ТДКС можно только приблизительно.
Для проверки строчных трансформаторов можно воспользоваться следующим способом. На коллекторную обмотку трансформатора подаем прямоугольные импульсы с частотой 1. 10 кГц
небольшой амплитуды (можно использовать выход сигнала калибровки осциллографа). Туда же подключаем вход осциллографа и по полученной картинке делаем заключение.
На исправном трансформаторе амплитуда полученных продифференцированных импульсов должна быть не меньше амплитуды исходных прямоугольных. Если ТДКС имеет короткозамкнутые витки, тогда мы увидим короткие продифференцированные импульсы амплитудой в два и более раз меньше исходных прямоугольных.
Этот способ очень рационален, так как позволяет при проверке обойтись только одним измерительным прибором, но, к сожалению, не каждый осциллограф имеет выход генератора, предназначенный для калибровки. В частности, такие популярные осциллографы, как С1-94, С1-112, не имеют отдельного генератора калибровки. Предлагаю изготовить простой генератор на одной микросхеме и разместить его прямо в корпусе осциллографа, что поможет быстро и эффективно производить проверку строчных трансформаторов.
Схема генератора показана на рис. 5.
Собранный генератор можно расположить в любом удобном месте внутри осциллографа, а питание подвести от шины 12 В. Для включения генератора удобно использовать сдвоенный тумблер (П2Т-1 -1 В), его лучше расположить на передней панели прибора в свободном месте не далеко от входного разъема осциллографа.
. При включении генератора через пару контактов тумблера подается питание, а другая пара контактов соединит выход генератора с входом осциллографа. Таким образом, для проверки трансформатора достаточно обычным сигнальным проводом соединить обмотку трансформатора с входом осциллографа.
Этот способ позволяет проверить ТДКС на межвитковое замыкание и обрыв в обмотках без применения генератора.
Для проверки трансформатора отсоединяем вывод ТДКС от источника питания (110 . 160 В). Коллектор выходного транзистора строчной развертки замыкаем перемычкой на общий провод. Блок питания по цепи 110. 160 В нагружаем лампочкой 40. 60 Вт, 220 В. Находим на вторичных обмотках трансформатора блока питания напряжение 10. 30 В и через резистор сопротивлением примерно 10 Ом подаем его к отсоединенному выводу ТДКС. С помощью осциллографа контролируем сигнал на резисторе. Если в трансформаторе есть межвитковое замыкание, картинка будет иметь вид «грязно-пушистого прямоугольника», и почти все напряжение упадет на резисторе. Если замыканий нет, прямоугольник будет чистый, и падение напряжения на резисторе будет составлять доли Вольта. Контролируя сигнал на вторичных обмотках, можно определить их неисправность. Если прямоугольник есть — обмотки исправны, если нет — оборваны. Далее убираем резистор 10 Ом и вешаем нагрузку (0,2. 1,0 кОм) на каждую вторичную обмотку ТДКС. Если картинка на выходе с нагрузкой практически повторяет входную, можно сделать вывод, что ТДКС исправен, и смело возвращать все на место.
Тестер имп.трансформаторов
Сделал тестер для импульсных трансформаторов. Данный прибор используется для определения к-з витков в высокочастотных трансформаторах, дросселях и т.п.
Что в итоге получилось:
Насколько знаю, такой тестер есть в наборе от мастер кита.
Немного о принципе действия.
Через тестируемую индуктивность заряжается конденсатор с3 импульсом малой длительности до напряжения около 0.7в. Далее этот конденсатор через полевик замыкается на общий провод. Образуется LC контур в котором возникают затухающие колебания на резонансной частоте.
Чем больше потери энергии в контуре тем быстрее падает амплитуда колебаний. Это определяет т.н. добротность контура, что это такое читайте в книжках по электротехнике. Так вот, в случае если катушка имеет к-з виток, колебания будут почти сразу затухать. Остальная часть схемы считает количество колебаний до того момента пока их амплитуда не упадет ниже определенного уровня.
Конструкция.
Для корпуса взята пластиковая коробочка размерами 45x60x28. В одной половине строительным акриловым клеем вклеена плата с кнопкой. В другой находятся батарейки.
Т.к. обычные боксы на 4ААА в крышку не влазили пришлось колхозить.
Контакты для батареек сделаны из полосок текстолита. Минусовые контакты-пружинки сделаны из металлической полосы от pls контактов, и припаяны. Вся конструкция вклеена в крышку на двухсторонний вспененный скотч.
Ну и собственно тесты.
Импульсный трансформатор от БП телевизора в нормальном состоянии:
Имитируем к-з виток:
Синфазный дроссель из входного фильтра:
Дроссель ДПМ на 100мкГн:
С сетевыми 50Гц трансформаторами тестер не работает. Видимо из-за замкнутого железного сердечника.
Оригинал статьи из журнала «Ремонт электронной техники», 2001-05 приложен в pdf. Схема взята без изменений. Немного изменил номиналы в задающем генераторе, т.к не было резисторов на 2.2М. Также вместо полевика bss170 поставил 2n7002, и вместо mc14015 — К561ИР2.
Схема с измененными номиналами прилагается отдельной картинкой в архиве. Плата разведена в sprint layout 5, также находится в архиве.