Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить импульсный трансформатор

Как проверить импульсный трансформатор

Как проверить импульсный трансформатор с помощью осциллографа

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.

Схема подключения для способа 1 Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.

Формы наблюдаемых сигналов Рис. 2. Формы наблюдаемых сигналов

Способ 2

  • Генератор НЧ,
  • Осциллограф

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.

izmer26-3

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.

Схема подключения для способа 3 Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить

Как проверить импульсный трансформатор мультиметром

как проверить импульсный трансформатор мультимером

Что бы проверить импульсный трансформатор можно использовать как аналоговый прибор, так и цифровой мультиметр. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Методика проверки аналоговым (стрелочным) измерительным прибором

  1. Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления.
  2. После в гнёзда тестера вставляются два провода и перемыкаются накоротко.
  3. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Читайте так же:
Как правильно называется разъем тюльпан

Как проверить импульсный трансформатор на межвитковое замыкание и обрыв

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного.

В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом обозначения диода на схеме.

  • Для определения обрыва к цифровому прибору подключаются измерительные провода.
  • Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM.
  • Галетный переключатель переводится в область прозвонки.
  • Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на межвитковое и короткое замыкание.

Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока.

Для проведения тестирования мультиметр переключается в режим проверки сопротивления.

Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки).

Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Тестер трансформаторов — это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел — если будет замыкание в витках — покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале "Ремонт электронной техники":

ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ - схема

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов — это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Плата ПРИБОРА ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа — появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Читайте так же:
Как подключить магнитный пускатель через кнопку

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15. R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1. HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два — желтые (ситуация неопределенная) и последние три — зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей — необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Аналог микросхемы 4015 — К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали — нет. Транзистор поставил 2N5401, а на месте полевого — 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков, сборка nickolay78.

Форум по обсуждению материала ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Усилитель мощности звука с двойной термостабилизацией — теория работы схемы и практическое тестирование.

Описание нового Блютус протокола беспроводной связи — Bluetooth Mesh.

Варианты выполнения гальванической развязки USB порта. Современные микросхемы для емкостной, оптической и электромагнитной развязки.

Изучение принципа действия и параметров кварцевого генератора, выбор КГ для различных устройств.

Расчетная проверка трансформаторов тока по условию 10% погрешности

Устройство трансформатора тока

Содержание

Одним из требований при выборе трансформаторов тока (ТТ) является их расчетная проверка на 10% погрешность. Что это значит и для чего это нужно? Это значит, что в аварийном режиме, когда ток в первичной обмотке трансформатора тока достигнет некоторого расчетного значения, погрешность ТТ не должна превышать 10%.

Читайте так же:
Как сделать из резинок чехол для телефона

В противном случае ток во вторичной обмотке трансформатора тока будет отличаться более чем на 10% от первичного (с учетом коэффициента трансформации), что может привести к несрабатыванию защиты.

Cпособы проверки ТТ на 10% погрешность

Существует несколько способов проверки ТТ на 10% погрешность:

  1. По кривым предельной кратности
  2. По паспортным данным ТТ
  3. По действительным вольт-амперным характеристикам, снятым у ТТ перед включением электроустановки
  4. По типовой кривой намагничивания электротехнической стали, используемой для изготовления ТТ.

Все эти способы описаны в книгах Шабада М.А. Мы же подробно остановимся на способе проверки трансформатора тока по его паспортным данным. Почему именно на нем? Потому что на этапе проектирования электроустановки снять действительные вольт-амперные характеристики трансформатора не представляется возможным, получить от заводов-изготовителей ТТ кривые предельной кратности также бывает достаточно проблематично, не говоря уже о кривой намагничивания электротехнической стали, из которой изготовлен сердечник ТТ.

Существует два способа проверки ТТ на 10% погрешность по его паспортным данным:

  1. По известным паспортным данным ТТ и его нагрузке определяется фактический коэффициент предельной кратности Кпк.факт и сравнивается с минимально требуемым Кпк.мин
  2. Определяется минимально требуемый коэффициент предельной кратности Кпк.мин, а затем с учетом фактической вторичной нагрузки ТТ определяется номинальный Кпк.ном. Затем выбирается трансформатор тока с ближайшим большим стандартным значением коэффициента Кпк.ном

Рассмотрим более подробно первый вариант (определение фактического Кпк.факт и сравнение его с минимально требуемым Кпк.мин).

Определение фактического коэффициента предельной кратности Кпк.факт

Итак, для определения фактического коэффициента предельной кратности Кпк.факт необходимы следующие исходные данные:

а) Паспортные данные ТТ, а именно

  • Sном — номинальная вторичная нагрузка трансформатора тока, ВА;
  • Zтр — внутреннее сопротивление трансформатора тока, Ом;
  • Кпк.ном – номинальный коэффициент предельной кратности;
  • Iперв — первичный номинальный ток трансформатора тока, А;
  • Iвтор — вторичный номинальный ток трансформатора тока, А.

б) Должна быть известна схема соединения трансформаторов тока и вторичной нагрузки

в) Необходимо знать какие устройства подключены к вторичной обмотке ТТ, а также какими проводами выполнено это соединение.

Теперь необходимо определить значение вторичной нагрузки, подключенной к цепям ТТ. Для этого воспользуемся готовыми формулами, позаимствованными из книги Шабада М.А.

Таблица 1 – Расчетные формулы для определения вторичной нагрузки трансформаторов тока Zн.расч

Понятно, что в формулах
Zн.расч – расчетное значение вторичной нагрузки, подключенной к цепям ТТ;
rпр – сопротивление проводов соединяющих трансформатор тока и реле защиты;
rпер – переходное сопротивление. Принимается равным 0,1 Ом;
Zр, Zр.ф, Zр.обр – сопротивление реле.

Так как сейчас в основном используются микропроцессорные реле защиты, потребляемая ими мощность по токовым цепям очень мала. Поэтому в формулах вместо Zр, Zр.ф, Zр.обр подставляем значение потребляемой мощности по токовым цепям микропроцессороного реле (в Омах). Если же в каждой фазе и в нулевом обратном проводе установлено свое отдельное реле, то в формулы необходимо подставлять значение потребляемой мощности каждого этого реле.

Если в информации на реле потребляемая по токовым цепям мощность дается в Вт или ВА, пересчет в Омы производится по формуле

Аналогично выполняется перевод номинальной мощности трансформатора тока из ВА в Омы

Сопротивление проводов rпр рассчитывается по формуле

где: Lпр – длина проводов от зажимов ТТ к реле, м
Sпр – сечение проводов, мм 2 ;
γпр – удельное электрическое сопротивление, в зависимости от материала проводов

  • γпр = 57 м/Ом · мм 2 – для меди
  • γпр = 34,5 м/Ом · мм 2 – для алюминия

Теперь необходимо определить фактический коэффициент предельной кратности по формуле

Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Все трансформаторы тока, используемые для питания аппаратуры РЗА, должны обеспечивать точную работу измерительных органов защиты в конкретных расчетных условиях, для чего полная погрешность трансформаторов тока не должна превышать 10% при I1расч.

В общем случае минимально необходимый коэффициент предельной кратности Кпк.мин определяется по формуле:

где: Ktd — переходный размерный коэффициент;

I1расч – ток, при котором должна быть обеспечена работа ТТ с погрешностью меньше 10% для правильного функционирования релейной защиты. Значения I1расч различны для разных видов защиты;

Читайте так же:
Как узнать какой провод фаза

Iперв.тт – номинальный первичный ток ТТ.

Примечание: для микропроцессорных устройств могут быть свои требования к Кпк.мин. Так, для устройств Siemens типа 7SJ80, 7SJ81, 7SJ82 минимально требуемый коэффициент предельной кратности должен быть Кпк.мин ≥ 20.

Таблица – Определение минимально необходимого коэффициента предельной кратности Кпк.мин

Вид защитыКtdI1расчПримечание
МТЗ и ТОНезависимая времятоковая х-ка1,1Iсраб.то — ток срабатывания наивысшей токовой ступени (как правило, токовой отсечки)Кпк.мин ≥ 20 (для Siemens типа 7SJ80, 7SJ81, 7SJ82) /td>
Зависимая времятоковая х-ка1,1Iсраб.МТЗ.уст — ток, при котором начинается установившаяся (независимая) часть характеристики
ДЗШ0,5Iкз.макс – максимальный ток короткого замыкания в месте установки защиты
ДЗТКЗ внутри защищаемой зоны0,5Iвнутр.КЗ – максимальный ток КЗ при повреждении внутри защищаемой зоныКпк.мин ≥ 25 (для Siemens типа 7UT82, 7UT85)
КЗ вне защищаемой зоны2Iвнеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой зоны (приведенный к стороне ВН)
ДЗЛ (функция 87L дифференциальной защиты линии)КЗ на защищаемой линии0,5Iвнутр.КЗ – максимальный ток КЗ при повреждении на защищаемой линииДля Siemens типа 7SD82
КЗ вне защищаемой линии1,2Iвнеш.КЗ – максимальный ток КЗ при повреждении вне защищаемой линии
  • МТЗ и ТО – максимальная токовая защита и токовая отсечка;
  • ДЗШ – дифференциальная защита шин;
  • ДЗТ – дифференциальная защита трансформатора;
  • ДЗЛ – дифференциальная защита линии

Проверка на предел измерения

При проверке токовых цепей для любой защиты должно выполняться условие

где: IКЗ.макс – максимальный ток КЗ в месте установки трансформаторов тока.

Пример проверки ТТ на 10% погрешность

Рассмотрим пример проверки трансформатора тока на 10% погрешность.

К трансформатору тока подключен терминал типа 7SJ80 в котором задействована максимальная токова защита и токовая отсечка. Уставка срабатывания токовой отсечки Iсраб.то = 3150 А. Схема соединения трансформаторов тока – полная звезда. Максимальное значение тока КЗ в месте установки защиты IКЗ.макс = 12,45 кА. Терминал релейной защиты устанавливается в релейном отсеке шкафа КРУ и соединяется с трансформаторами тока медными проводами сечением 2,5 мм 2 .

Проверка

1. По информации на устройство 7SJ80 находим потребляемую им мощность по токовым цепям.

2. Переводим потребляемую мощность в Омы

3. Находим сопротивление проводов от ТТ к терминалу защиты. Поскольку терминал устанавливается в релейном отсеке шкафа КРУ принимаем длину проводом 5 м.

4. Для схемы соединения трансформаторов тока и вторичной нагрузки “полная звезда” используя формулы таблицы 1 находим фактическую вторичную нагрузку трансформатора тока.

Так как мы достоверно не знаем, какой потребитель получает питание от защищаемого присоединения, рассчитываем на худший случай. Максимальная вторичная нагрузка для схемы соединения ТТ “полная звезда” будет для однофазного КЗ, его и примем в качестве расчетного.

5. Определим фактический коэффициент предельной кратности. Для этого сначала переведем номинальную вторичную нагрузку трансформатора тока из ВА в Омы

Определим минимально необходимый коэффициент предельной кратности для максимальной токовой защиты

Следовательно, минимально необходимый коэффициент предельной кратности должен быть больше либо равен 20. Фактический коэффицент предельной кратности при ТТ с Кном= 10 согласно расчету составляет

Условие не выполняется. Необходимо брать ТТ с большим Кном. Возьмем ближайший больший стандартный Кном= 15 и найдем фактический Кпк.факт

Проверка на предел измерения

12450 / 600 = 20,75 < 100

Вывод: по условию проверки на 10% погрешность необходимо брать трансформатор тока с Кном = 15.

Онлайн проверка трансформаторов тока по условию 10% погрешности

Результат расчетной проверки трансформаторов тока

Номинальная нагрузка ТТ (в Омах)Zном.ТТ, Ом
Сопротивление релеZр, Ом
Сопротивление проводов от ТТ к устройству защитыrпр, Ом
Фактическая вторичная нагрузка ТТZн.расч, Ом
Фактический коэффициент предельной кратностиKпк.факт
Минимально необходимый для устройства защиты коэффициент предельной кратностиKпк.мин
Условия проверки
Проверка на 10% погрешностьKпк.факт ≥ Kпк.мин
Проверка на предел измеренияIкз.макс / Iперв ≤ 100
Расчет выполнен на сайте electro-engineering.ru
  1. Руководства по эксплуатации терминалов релейной защиты Siemens типа 7SJ80, 7SJ81, 7SJ82, 7SS85, 7UT82-85, 7SD82.
  2. Шабад. М.А. Расчеты релейной защиты и автоматики распределительных сетей: Монография. СПб.:ПЭИПК, 2003.

Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций

Как проверить трансформатор микроволновки на исправность

Иногда при работе СВЧ печи раздаётся излишний шум, разогревается корпус и из него доносится запах гари. В этом случае высока вероятность того, что возникли определённые проблемы с преобразователем напряжения. И чтобы в этом убедится необходимо выявить его исправность.

Как проверить трансформатор СВЧ печки на исправность

Проверка трансформатора свч-печи на исправность

Исправность преобразователя проверяют путём определения вольтажа на обмотках. Но с деталями, в которых присутствует большой вольтаж, этот метод недопустим. Всё дело в том, что на вторичной катушке вольтаж достигает опасных 2 кВ. Именно поэтому производители этой техники советуют проверять целостность преобразователя путём замера сопротивления дросселя.

Его целостность можно определить и другим способом. Суть заключается в том, что проверяют ток на холостом ходу. Для этого отключают провода, которые подходят к устройству, и извлекают его из корпуса. Параллельно с этим на первую катушку устанавливают амперметр. Через него подают питание.

Проверка трансформатора микроволновки

Важно! Если преобразователь исправлен, на индикаторе тестера будут высвечиваться следующие данные, на работающей детали ток в холостом режиме будет находиться в диапазоне от 0,3 до 0,5 А. Если, цифры будут выше, то, скорее всего, трансформатор неисправен.

Проверить трансформатор самостоятельно

Выявить его работоспособность можно двумя способами – безопасным и под напряжением. Об этом ниже.

Безопасная диагностика: как проверить трансформатор микроволновки мультиметром

Безопасное исследование выполняют с помощью тестера (мультиметра). Суть исследования – это поиск каких-либо неполадок. Последовательность действий выглядит следующим образом:

  1. Прибор настраивают для проведения измерения, установив необходимые пределы измерений.
  2. После этого проверяют сопротивление катушек – первичной и вторичной.

Важно! Перед проведением замеров преобразователь должен быть извлечён из корпуса.

Проверка мультиметром

Если на панели тестера появляется цифра «1», произошёл разрыв. При наличии замкнутой цепи на первой катушке на индикаторе должно быть значение порядка 4 – 4,5 Ом, на накальной катушке 3,5–8 Ом, на высоковольтной 140–350 Ом. Мультиметр настраивают на диапазон измерений в пределах 200 Ом. При проведении замеров, результаты не должны выходить за показанные пределы.

Важно! Если измерения вышли за указанные пределы, то, скорее всего, произошло замыкание между витками обмотки.

Целесообразно учитывать погрешность измерительного прибора. Для того чтобы проверить состояние устройства, нет нужды отдавать печь в сервисный центр. Если у пользователя имеются знания основ электротехники, то он сможет протестировать параметры напряжения.

Проверка под напряжением

Элементы проверки трансформатора микроволновки

Если проведена проверка замыкания, но изделие всё равно не работает в штатном режиме, то имеет смысл определить состояние вторичного дросселя.

Внимание! Это опасный процесс, и, выполняя работу, необходимо соблюдать меры безопасности.

Алгоритм проверки устройства под током выглядит следующим образом:

  1. На изделие подают 220 В.
  2. Используя прибор, который позволяет проводить работы от 2 кВ, проверяют напряжение на выходах обмоток.

Вольтаж на накальной катушке должен лежать в пределах 3 кВ, на высоковольтной – 2 кВ.

Обратная проверка

Такой способ проверки трансформатора, наверное, самый простой. На вторичную обмотку подают 220 В, с первичной будет снято 24 В. В том случае, если на первичную обмотку подать 12 В, то на вторичной потенциал достигнет 109 В.

Разбор микроволновки для обратной проверки

Если в холостом режиме работы происходит нагрев устройства, то, скорее всего, произошло замыкание между витками обмотки. Если оно греется во время работы, а при отключении он перестаёт нагреваться, то необходимо искать неполадки дальше.

Меры предосторожности во время проверки трансформатора микроволновки на работоспособность

При выполнении замеров можно получить удар током. Причём его последствия непредсказуемы. Соблюдая простые правила можно избежать подобной неприятности:

  • При определении данных на работающей печи недопустимо касаться деталей, установленных в печи.
  • Для проведения измерений на тестере установите так называемые зажимы – крокодилы и подключайтесь к цепям с их помощью.

Если возникает необходимость прикосновения к деталям, проделайте следующие манипуляции, которые позволят избежать удара от конденсатора:

  1. отключите изделие из сети;
  2. перемкните выводы магнетрона на корпус печи.

Резистор свч-печи

В штатной схеме СВЧ – печи предусмотрено наличие резистора, который принимает на себя разряд ёмкости, но и он не может полностью исключить опасность поражения током. Резистор может перегореть. В этом случае удар тока может привести к летальному исходу. Будьте осторожны!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector