Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что нужно знать о классе точности измерительного прибора

Что нужно знать о классе точности измерительного прибора?

Измерительные приборы: вольтметры, амперметры, токовые клещи, осциллографы и другие — это устройства, предназначенные для определения искомых величин в заданном диапазоне, каждый из них имеет свою точность, причем устройства, измеряющие одну и ту же величину, в зависимости от модели, могут отличаться по точности и классу.

В каких-то ситуациях достаточно просто определить значение, например, вольтаж батарейки, а в других необходимо выполнить многократное повторение измерений высокоточными приборами для получения максимально достоверного результата, так в чем отличие таких измерительных устройств, что означает класс точности, сколько их бывает, как его определить и многое другое читайте далее в нашей статье.

Что такое класс точности

Определение: «Класс точности измерения — это общая характеристика точности средства измерения, определяемая пределами допустимых основных и дополнительных погрешностей, а также другими факторами, влияющими на нее».

Сам по себе класс не является постоянной величиной измерения, потому что само измерение зачастую зависит от множества переменных: места измерения, температуры, влажности и других факторов, класс позволяет определить лишь только в каком диапазоне относительных погрешностей работает данный прибор.

Чтобы заранее оценить погрешность, которую измерит устройство, также могут использоваться нормативные справочные значения.

Устаревание, несовершенство изготовления измерителей, внешние воздействия — это основной показатель отклонения погрешностей.

Относительная погрешность — это отношение абсолютной погрешности к модулю действительного приближенного показателя полученного значения, измеряется в %.

Абсолютная погрешность рассчитывается следующим образом:

∆=±a или ∆=(a+bx)

x – число делений, нормирующее значение величины

a, b – положительные числа, не зависящие от х

Абсолютная и приведенная погрешность рассчитывается по следующим формулам, см. таблицу ниже

Какая погрешность определяет класс точности прибора

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Какая погрешность определяет класс точности прибора

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Читать также: Как правильно сделать дымогенератор для холодного копчения

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Какие классы точности бывают, как обозначаются

Как мы уже успели выяснить, интервал погрешности определяется классом точности. Данная величина рассчитывается, устанавливается ГОСТом и техническими условиями. В зависимости от заданной погрешность, бывает: абсолютная, приведенная, относительная, см. таблицу ниже

Согласно ГОСТ 8.401-80 в системе СИ классы точности обычно помечается латинской буквой, часто с добавлением индекса, отмеченного цифрой. Чем меньше погрешность, соответственно, меньше цифра и буквенное значение выше по алфавиту, тем более высокая точность.

Приборы, способные выполнять множество различных замеров, могут быть одновременно более двух классов.

Класс точности обозначается на корпусе устройства в виде числа обведенного в кружок, обозначает диапазон погрешностей измерений в процентах. Например, цифра означает относительную погрешность ±2%. Если рядом со знаком присутствует значок в виде галочки, это значит, что длина шкалы используется в качестве вспомогательного определения погрешности.

  • 0,1, 0,2 – считается самым высоким классом
  • 0,5, 1 – чаще применяется для устройств средней ценовой категории, например, бытовых
  • 1,5, 2,5 – используется для приборов измерения с низкой точностью или индикаторов, аналоговых датчиков

Примечание. На корпусе высокоточных измерителей, класс может не наносится. Обозначение таких устройств как правило выполняется особыми знаками.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Читайте так же:
Как открутить прикипевший болт с сорванными гранями

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Как определить класс точности электроизмерительного прибора, формулы расчета

Чтобы определить класс точности, необходимо взглянуть на его корпус или инструкцию пользователя, в ней вы можете увидеть цифру, обведенную в круг, например, ① это означает, что ваш прибор измеряет величину с относительной погрешностью ±1%.

Но что делать если известна относительная погрешность и необходимо рассчитать класс точности, например, амперметра, вольтметра и т.д. Рассмотрим на примере амперметра: известна ∆x=базовая (абсолютная) погрешность 0,025 (см. в инструкции), количество делений х=12

Находим относительную погрешность:

Y= 100×0,025/12=0,208 или 2,08%

(вывод: класс точности – 2,5).

Следует отметить, что погрешность неравномерна на всем диапазоне шкалы, измеряя малую величину вы можете получить наибольшую неточность и с увеличением искомой величины она уменьшается, для примера рассмотрим следующий вариант:

Вольтметр с классом p=±2, верхний предел показаний прибора Xn=80В, число делений x=12

Предел абсолютной допустимой погрешности:

Относительная погрешность одного деления:

Если вам необходимо выполнить более подробный расчет, смотрите ГОСТ 8.401-80 п.3.2.6.

Погрешность. Классы точности средств измерений.

Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски… Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как «среднее квадратическое отклонение случайной составляющей погрешности» или «нормализованная автокорреляционная функция» или «характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений» и т. п. Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает.

Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

По числовой форме представления подразделяются:

  1. Абсолютная погрешность: Δ = Xд — Xизм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы. где Xд – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений; Xизм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ Xд) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ Xн) · 100, выражается в % от нормирующего значения. где Xн – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).

По характеру проявления:

  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.

Как определить погрешность комплекта приборов, в который входит первичный преобразователь, вторичный преобразователь (усилитель) и вторичный прибор. У каждого из элементов этого комплекта есть своя абсолютная, относительная или приведённая погрешность. И чтобы оценить, общую погрешность измерения, необходимо все погрешности привести к одному виду, а дальше посчитать по формуле:

Читайте так же:
Провода синий и коричневый где плюс

Дальше будет интересно, наверное, только метрологам и то, только начинающим. Теперь совсем немного вспомним о средних квадратических отклонениях (СКО). Зачем они нужны? Так как истинное значение выявить невозможно, то необходимо хотя бы наиболее точно приблизиться к нему или определить доверительный интервал, в котором истинное значение находится с большой долей вероятности. Для этого применяют различные статистические методы, приведём формулы наиболее распространённого. Например, Вы провели n количество измерений чего угодно и Вам необходимо определить доверительный интервал:

  1. Определяем среднее арифметическое отклонение: где n – количество отклонений
  2. Определяем среднее квадратическое отклонение (СКО) среднего арифметического:
  3. Рассчитываем случайную составляющую погрешности: где t – коэффициент Стьюдента, зависящий от числа степеней свободы Таблица 1.
    α =0,68α =0,95α =0,99
    ntα,nntα,nntα,n
    22,0212,7263,7
    31,334,339,9
    41,343,245,8
    51,252,854,6
    61,262,664,0
    71,172,473,7
    81,182,483,5
    91,192,393,4
    101,1102,3103,3
    151,1152,1153,0
    201,1202,1202,9
    301,1302,0302,8
    1001,01002,01002,6
  4. Определяем СКО систематической составляющей погрешности:
  5. Рассчитываем суммарное СКО:
  6. Определяем коэффициент, зависящий от соотношения случайной и систематической составляющей погрешности:
  7. Проводим оценку доверительных границ погрешности:

В последнее время всё чаще на слуху термин «неопределённость». Медленно, но верно и настойчиво его внедряют в отечественную метрологию. Это дань интеграции нашей экономики во всемирную, естественно необходимо адаптировать нормативную документацию к международным стандартам. Не буду тут «переливать из пустого в порожнее», это хорошо сделано в различных нормативных документах. Чисто моё мнение, «расширенная неопределённость измерений» = основная погрешность + дополнительная, которая учитывает все влияющие факторы.

Поверка приборов, для чего она нужна

Все измерительные приборы измеряют с некой погрешностью, класс точности говорит лишь о том, в каком диапазоне она находится. Бывают случаи, когда диапазон погрешности незаметно увеличивается, и мы начинаем замечать, что измеритель «по-простому» начинает врать. В таких случаях помогает поверка.

Это процесс измерения эталонной величины в идеальных условиях прибором, обычно проводится метрологической службой или в метрологическом отделе предприятия производителя.

Существует первичная и периодическая, первичную проверку проводят после выпуска изделия и выдают сертификат, периодическую проводят не реже чем раз в год, для ответственных приборов чаще.

Поэтому если вы сомневаетесь в правильности работы устройства, вам следует провести его поверку в ближайшей метрологической службе, потому что измеритель может врать как в меньшую, так и в большую сторону.

Как легко проверить потребление электроэнергии в квартире, можете узнать в нашей статье.

Вопрос выбора

Для установки электросчётчика в частном доме или квартире подойдут модели, которые имеют класс не менее 2.

Кроме этого, отправляясь за электрическим счётчиком в магазин, следует точно знать следующие характеристики:

Классы точности средств измерений

Класс точности — это обобщенная характеристика СИ, выра­жаемая пределами допускаемых значений его основной и допол­нительной погрешностей, а также другими характеристиками, влияющими на точность.

Класс точности не является непосредственной оценкой точности измерений, выполняемых этим СИ, поскольку погрешность зависит еще от ряда факторов: метода измерений, условий измерений и т. д. Класс точности лишь позволяет судить о том, в каких пределах на­ходится погрешность СИ данного типа.

Предел допускаемой основной погрешности СИ, определяемый классом точности, — это интервал, в котором находится значение основной погрешности СИ. Если СИ имеет незначительную слу­чайную составляющую, то определение СИ относится к нахожде­нию систематической погрешности и случайной погрешности, обу­словленной гистерезисом, и является достаточно строгим. При этом предел СИ OSP 0,5HOP.

Если СИ имеет существенную случайную погрешность, то для него определение предела допускаемой основной погрешности является нечетким. Его следует понимать как интервал, в котором находится значение основной погрешности с неизвестной вероят­ностью, близкой к единице:

Классы точности СИ устанавливаются в стандартах или техни­ческих условиях. Средство измерений может иметь два и более класса точности. Например, при наличии у него двух или более диапазонов измерений одной и той же физической величины ему можно присваивать два или более класса точности. Приборы, пред­назначенные для измерения нескольких физических величин, также могут иметь различные классы точности для каждой изме­ряемой величины.

Читайте так же:
Как отпаять светодиод от алюминиевой платы

Пределы допускаемых основной и дополнительной погрешностей выражают в форме приведенных, относительных или абсолютных погрешностей. Выбор формы представления зависит от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения СИ. Пределы допускаемой абсолютной погрешности устанавливают­ся по одной из формул:

Первая формула описывает чисто аддитивную погрешность (рис.7.1 , а), а вторая — сумму аддитивной и мультипликативной погреш­ностей (рис. 7.2, в). В технической документации классы точности, установленные в виде абсолютных погрешностей, обозначают, на­пример, «Класс точности М», а на приборе — буквой «M». Для обозначения используются прописные буквы латинского алфавита или римские цифры, причем меньшие пределы погрешностей долж­ны соответствовать буквам, находящимся ближе к началу алфавита, или меньшим цифрам.

Пределы допускаемой приведенной основной погрешности определяются по формуле

Равным наиболь­шему из всех имеющихся пределов измерений для СИ с равномер­ной, практически равномерной или степенной шкалами, а также для тех измерительных преобразователей, у которых нулевое зна­чение выходного сигнала находится на краю или вне диапазона измерений.

Для СИ, шкала которых имеет условный нуль, xN равно модулю разности пределов измерений. Например, для вольтметра термо­электрического термометра с пределами измерений от 100 до 600 °С нормирующее значение равно 500 °С. Для СИ с заданным номи­нальным значением xN принимают равным всей длине шкалы или ее части, соответствующей диапазону измерений.

В этом случае пределы абсолютной погрешности выражают, как и длину шкалы, в единицах длины, а на СИ класс точности условно обозначают, например, в виде значка ,5/, где 0,5 — значение числа р. В осталь­ных рассмотренных случаях класс точности обозначают конкретным числом р, например 1,5. Обозначение наносится на циферблат при­бора.

Расшифровка обозначений класса точности

Расшифровка обозначений класса точности

Класс точности — основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

Погрешность может нормироваться, в частности, по отношению к:

  • результату измерения (по относительной погрешности). В этом случае, по ГОСТ 8.401-80 (взамен ГОСТ 13600-68), цифровое обозначение класса точности (в процентах) заключается в кружок.
  • длине (верхнему пределу) шкалы прибора (по приведенной погрешности)

Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.

Обозначение класса точности

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Следует иметь в виду, что понятие класса точности встречается в различных областях техники. Так в станкостроении имеется понятие класса точности металлорежущего станка, класса точности электроэрозионных станков (по ГОСТ 20551).

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

Читайте так же:
Как обрезать керамическую плитку без плиткореза

Аппараты с классом точности 0,5 (0,2) начинают работать в классе от 5 % загрузки. а 0,5s (0,2s) уже с 1 % загрузки.

Класс точности

Класс точности измерительного прибора — обобщенная характеристика прибора, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами прибора, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Класс точности характеризует свойства приборов в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих приборов. Например, класс точности вольтметров характеризует пределы допускаемой основной погрешности и допускаемых изменений показаний, вызываемых внешним магнитным полем и отклонениями от нормальных значений температуры, частоты переменного тока и некоторых других влияющих величин.

Класс точности измерительного прибора — это число, которое соответствует наибольшей погрешности, допустимой нормами. Класс точности выражается в процентах от верхнего предела измерения прибора. Например, термометр класса 1 может иметь допустимую погрешность 1 % от верхнего предела шкалы.

Класс точности измерительного прибора определяется наибольшей допустимой погрешностью в процентах величины, соответствующей предельному значению шкалы прибора.

Класс точности измерительных приборов нормируется как обобщенная характеристика средств измерений, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на их точность, значения которых устанавливаются стандартами на соответствующие виды измерительных приборов.

Классом точности измерительного прибора называется его характеристика, которая определяет степень точности измерения, пределы основной погрешности. Для приборов теплотехнического контроля холодильных установок класс точности численно равен максимальной величине приведенной основной погрешности, выраженной в процентах.

Что характеризует класс точности измерительных приборов .

Приведенная допустимая погрешность определяет класс точности измерительного прибора .

Значение какой величины определяет обозначение класса точности измерительного прибора .

Предельные значения основной и дополнительной погрешностей определяют класс точности измерительного прибора , который задается двумя способами: по величине абсолютной погрешности и по величине наибольшей допустимой основной приведенной погрешности в виде абсолютного числа, совпадающего с пределом допустимой погрешности для конечного значения рабочей части шкалы.

В физико-химических иследованиях первый путь равносилен увеличению класса точности измерительных приборов или переходу к более прецизионным методам измерений. Второй путь представляется более доступным, но он пригоден лишь применительно к измерению экстенсивных величин. Кроме того, для успешного использования этого приема нужно быть уверенным в том, что абсолютная погрешность измерений не коррелирует с массой исследуемого образца и, следовательно, с измеряемым экстенсивным свойством. Так, если абсолютная погрешность измерения энтальпии сгорания для калориметра данной конструкции есть величина приблизительно постоянная для заданного интервала значений 100 — 5000 Дж, с целью снижения относительной погрешности определения следует сжигать навески, обеспечивающие большое тепловыделение.

Максимальная погрешность этих измерений известна и определяется классом точности примененных измерительных приборов .

При различных экспериментальных работах очень важно правильно выбрать класс точности используемых измерительных приборов. Под точностью прибора понимают его свойство, характеризующее степень приближения показаний данного прибора к действительным значениям измеряемой величины

Обычно точность прибора задается классом точности прибора или указывается в его паспорте. Очевидно, что чем точнее прибор, тем меньше его погрешность и выше стоимость.

Допустимое отношение сигнал / помеха зависит также от класса точности измерительного прибора .

А ( / — ошибка измерения, которая определяется классом точности измерительного прибора ; ДХ — допустимая погрешность измерения моделируемой величины.

Особо специфическими являются требования, предъявляемые некоторыми стандартами в отношении класса точности измерительных приборов , применяемых при испытаниях.

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Читайте так же:
Как выбрать триммер бензиновый для дачи

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей

Аппарат В3-38 для использования в сетях переменного тока

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.

Цифровые устройства практически полностью вытеснили аналоговые

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector