Как вписать двенадцатиугольник в окружность
Как вписать двенадцатиугольник в окружность
Являющиеся одной из неотъемлемых частей школьной программы, геометрические задачи на построение правильных многоугольников достаточно тривиальны. Как правило, построение ведется путем вписывания многоугольника в окружность, которая вычерчивается первой. Но что делать, если окружность задана, а фигура весьма сложна?Вам понадобится
К имеющейся окружности постройте хорду. Вычертите произвольный отрезок прямой так, чтобы он имел две точки пересечения с ю. Определите эти точки как A и B.
Постройте отрезок прямой, перпендикулярной AB и разделяющий его в точке пересечения на две равные части. Поставьте иглу циркуля в точку A. Поставьте ножку с грифелем в точку B, либо в любую точку отрезка, которая находится ближе к B чем к A. Начертите окружность. Не меняя раствор ножек циркуля установите его иглу в точку B. Начертите еще одну окружность.Вычерченные окружности пересекутся в двух точках. Проведите через них отрезок прямой. Обозначьте точку пересечения данного отрезка с отрезком AB как C. Обозначьте точки пересечения этого отрезка с первоначальной окружностью как D и E.
Постройте перпендикуляр к отрезку DE, делящий его пополам. Произведите действия, аналогичные тем, что были описаны в предыдущем шаге, по отношению к отрезку DE. Пусть вычерченный отрезок пересекает DE в точке O. Данная точка будет являться центром окружности. Также обозначьте точки пересечения построенного перпендикуляра с первоначальной окружностью как F и G.
Установите раствор ножек циркуля таким образом, чтобы расстояние между их концами было равно радиусу первоначальной окружности. Для этого поместите иглу циркуля в одну из точек A, B, D, E, F или G. Конец ножки с грифелем поместите в точку O.
Постройте правильный шестиугольник. Установите иглу циркуля в любую точку линии окружности. Обозначьте эту точку H. В направлении движения по часовой стрелке сделайте циркулем дугообразную засечку так, чтобы она пересекала линию окружности. Обозначьте эту точку I. Переместите иглу циркуля в точку I. Снова сделайте засечку на окружности и обозначьте полученную точку J. Аналогичным образом постройте точки K, L, M. Последовательно попарно соедините точки H, I, J, K, L, M, H. Полученная фигура является правильным шестиугольником, вписанным в заданную окружность.
Найдите недостающие точки вершин углов двенадцатиугольника. К отрезкам HI, IJ, JK постройте делящие их пополам перпендикуляры так, чтобы построенные отрезки пересекали окружность O в двух точках. Обозначьте полученные точки буквами N, O, P, Q, R, S, начиная с той, что находится за точкой H на окружности по направлению движения часовой стрелки.
Постройте правильный двенадцатиугольник, вписанный в окружность. Попарно соедините точки H, N, I, O, J, P, K, Q, L, R, M, S, H отрезками. Многоугольник HNIOJPKQLRMS является искомым двенадцатиугольником.
Построение правильных многоугольников
Для решения задачи воспользуемся тем, что сторона шестиугольника равна радиусу описанной около него окружности, т.е. (смотри формулу для вычисления стороны правильного многоугольника), где
— радиус окружности описанной около правильного многоугольника. Нам нужно построить правильный шестиугольник со стороной DC, поэтому с помощью циркуля измеряем отрезок DC и строим окружность радиуса DC, и отмечаем на ней произвольную точку А1, центр окружности обозначаем буквой О.
Затем не меняя раствора циркуля, построим на этой окружности точки А2, А3, А4, А5, А6, так, чтобы выполнялись равенства
А1А2 = А2А3 = А3А4 = А4А5 = А5А6 = DC (т.е. сначала строим окружность радиуса DC с центром в точке А1 (всю окружность строить необязательно, смотри выделенное красным), данная окружность пересечет окружность с центром О в точке А2, далее аналогично строим окружность радиуса DC с центром в точке А2, она пересечет окружность с центром О в точке А3 и т.д.).
Теперь соединяя последовательно построенные точки отрезками, получим искомый правильный шестиугольник А1А2А3А4А5А6.
Задача 2
Дан правильный />-угольник. Построить правильный 2 />-угольник.
Дано: правильный -угольник А1А2А3. Аn.
Построить: правильный 2-угольник.
Решение:
Пусть, например, нам дан шестиугольник А1А2А3А4А5А6, значит, построить нужно двенадцатиугольник.
Сначала опишем около данного шестиугольника А1А2А3А4А5А6 окружность. Для этого построим биссектрисы углов А1 и А2. Чтобы построить биссектрису угла А1, строим окружность произвольного радиуса с центром в точке А1 (полностью окружность строить необязательно, смотри выделенное красным цветом), данная окружность пересечет стороны А1А2 и А1А6 угла А1 в точках Е и К. Затем строим две окружности с центрами в точках Е и К радиуса ЕК (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом), данные окружности пересекутся в точке Р. Далее проводим луч А1Р, который и будет биссектрисой угла А1.
Аналогично строим биссектрису угла А2.
Точку пересечения биссектрис углов А1 и А2 обозначаем буквой О и строим окружность радиуса ОА1 с центром О (окружность описанная около А1А2А3А4А5А6).
Далее нужно каждую из дуг А1А2, А2А3, А3А4, А4А5, А5А6, А6А1 разделить пополам. Чтобы разделить дугу А1А2 пополам, построим серединный перпендикуляр к отрезку А1А2. Для этого строим две окружности с центрами в точках А1 и А2 радиуса А1А2 (полностью окружность строить необязательно, смотри выделенное красным цветом). Данные окружности пересекутся в двух точках, одну обозначим буквой М, а другая совпадет с точкой О, т.к. у шестиугольника сторона равна радиусу (с другими многоугольниками совпадения с точкой О не будет) . Затем проводим прямую МО, данная прямая пересечет дугу А1А2 в точке В1, которая и разделит дугу А1А2 пополам. Далее точку В1 соединяем с концами А1 и А2 дуги А1А2.
Аналогично находим точки В2, В3. Точки В4, В5, В6 в данном случае строить необязательно, они получаются автоматически при построении точек В1, В2, В3, т.к. шестиугольник симметричная фигура.
Мы выполняли построения на примере правильного шестиугольника, если мы имеем произвольный правильный -угольник, то все построения выполняются аналогично.
Применяя указанный способ, можно с помощью циркуля и линейки построить целый ряд правильных многоугольников, если построен один из них. Например, построив правильный треугольник и пользуясь результатом задачи 2, можно построить правильный шестиугольник, затем правильный двенадцатиугольник и вообще 2 k -угольник, где — любое целое число, больше двух.
Замечание
Не все правильные многоугольники можно построить с помощью циркуля и линейки. Доказано, например, что правильный семиугольник не может быть построен при помощи циркуля и линейки.
Как нарисовать шестиугольник в линейной перспективе
Здравствуйте коллеги. В этом уроке узнаем, как нарисовать шестиугольник в перспективе.
Как вписать его фронтально в окружность мы смотрели в прошлом уроке. Заметьте ничего сложного нет. Нам удалось малыми средствами начертить равнобедренный предмет с шестью вершинами.
Его можно сделать еще проще. Например, отложить шесть радиусов на тело овала. Эта фигура не такая сложная, как с пятью или с семью углами, уроки которых мы рассмотрим в других статьях.
Я не фанат точной науки геометрии. Приходилось рисовать, но без циркуля и угольника не всегда получалось правильно создать картину.
Наша задача показать полную иллюзию пространства на двухмерной плоскости. Нарисуем многоугольник онлайн в перспективе, а для этого нужно знать правила построения.
К примеру, чтобы создать многоугольный узор на потолке, как на картине художника Премацци, нужно знать законы построения.
«Виды залов нового Эрмитажа. Галерея фламандской живописи.»
На картине Гау мы видим интерьер дворца. И все узоры выполнены в рамках законов линейной перспективы.
«Зимний дворец. Петровский зал.»
Посмотрите узор на полу в произведении Жерома Жан-Леона.
«Painting Breathes Life into Sculpture»
Задумывая сюжет в интерьере, нам придется изучать принципы построения.
Как положить шестигранник на плоскость посмотрите видео урок ниже.
Рисуем онлайн многоугольник в перспективе
Делал я его с помощью программы Photoshop, все то же самое можно сделать и на бумаге.
Для рисования нам понадобятся:
- Карандаш
- Циркуль
- Линейка
- Резинка
Такой небольшой набор инструментов необходим для черчения в живую.
Сам рисунок вы можете посмотреть на видео.
Сделаем акцент, когда шестиугольник вписанный в окружность.
Ниже на фото фигура построена. И, казалось бы, добавить нечего.
Но правильный рисунок будет если его вписать в овал. У нас есть две точки по сторонам квадрата, и появились новые четыре точки. Картинка ниже.
В таком формате он не будет деформированный, вытянутый или сплюснутый. На рисунке будет смотреться правдоподобнее.
По такому же принципу можно сделать фигуру не только горизонтально, но и вертикально.
В таком случае мы сможем выстроить призму. Для этого мы сделаем переднее и заднее основания и соединим их линиями. Эта процедура детально описана в моем платном курсе, можете перейти по этой ссылке.
В окружность радиуса 18 см вписан правильный шестиугольник, В этот шестиугольник вписана окружность, а в окружность — правильный
В 2:34 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.
Вопрос вызвавший трудности
Ответ подготовленный экспертами Учись.Ru
Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: В окружность радиуса 18 см вписан правильный шестиугольник, В этот шестиугольник вписана окружность, а в окружность — правильный треугольник. Найдите сторону треугольника
После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:
решение задания по геометрии
НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:
Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.
Волкова Лиза Агафоновна — автор студенческих работ, заработанная сумма за прошлый месяц 61 200 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию
ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!
Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.
Деятельность компании в цифрах:
Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.
Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.
Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.
Красивые высказывания — цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.
Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.