Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Медь или алюминий: что лучше всего подходит для проводки

Медь или алюминий: что лучше всего подходит для проводки?

Сейчас подавляющее большинство электриков используют медную проводку вместо алюминиевой. Но почему? Чем медь лучше алюминия? Ответ в нашей статье.

Медь или алюминий: что лучше всего подходит для проводки?

В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился.

Превосходство меди над алюминием для проводки

1. Электропроводность

Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм 2 /м в то время, как у алюминия 0,028 Ом*мм 2 /м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм 2 , например, NYM 3х2,5, или алюминиевый сечением 4 мм 2 . Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.

2. Окисление

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.

3. Механическая прочность

Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

4. Теплопроводность

Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Превосходство алюминия над медью для ЛЭП

Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно!

1. Вес

Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м 3 , а алюминия 2700 кг/м 3 . То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.

2. Цена

Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.

Экспериментальное определение теплопроводности термопаст

На рынке присутствует множество термопаст, многократно отличающихся как ценой, так и заявленной теплопроводностью. Поскольку проверить этот параметр на практике не так просто, а в реальных условиях использования слишком много неизвестных и плохо поддающихся контролю переменных, неизбежно возникает вопрос — за что просят весьма немалые деньги? Попытался на экспериментальном стенде не просто сравнить между собой три разных термопасты по принципу «лучше — хуже», но и приблизительно оценить теплопроводность каждой, сравнив с данными производителя. Подробности ниже.

Читайте так же:
Как правильно сварить нержавейку

В качестве испытательного стенда использовал уже знакомый читателям моих предыдущих обзоров мощный транзистор, прикрученный на массивный радиатор.


Там же все детали методики были описаны более подробно, сейчас совсем кратко.
Так как, несмотря на большую массу, температура радиатора в процессе измерений заметно подрастает, он дополнительно помещен в контейнер с водой, обладающей большой теплоемкостью.

Температура измеряется при помощи термопары

которая по очереди помещается то в глухое отверстие в радиаторе, просверленное наклонно рядом с фланцем, то на фланец транзистора. И отверстие, и фланец в месте контакта с термопарой смазаны термопастой.

Напряжение и ток подобрал так, чтобы на тразисторе рассеивалась мощность 50 Вт

Для того, чтобы получить количественное значение коэффициента теплопроводности, термопасту необходимо нанести слоем известной толщины. Для этого по краям фланца наклеил две полоски изоленты толщиной 0.15 мм. Так как в комментариях к предыдущему обзору меня справедливо упрекали, что без синей изоленты никакой обзор не может считаться полным, исправлю этот досадный недостаток и возьму СИНЮЮ изоленту :)))

На всякий случай нужно проверить толщину, с этим все в порядке (лента в два слоя)

и попробовать на глаз оценить равномерность получившегося зазора, вроде тоже неплохо

Общая площадь металлической части основания составляет 210 мм², площадь свободной от изоленты части примерно 160 мм².

Чтобы по возможности исключить влияние силы прижима на толщину слоя (как за счет сжимаемости изоленты, так и в силу прогиба фланца), для затягивания прижимного болта использовал динамометрическую отвертку с усилием 0.5 Н*м

В качестве первого испытуемого взял всем хорошо известную пасту КПТ-8. Её теплопроводность заявлена в диапазоне 0.65 — 1 Вт/(м*К).

Наносить пасту одно удовольствие — жидкая, хорошо прилипает к поверхности, легко выравнивается

По фотографии можно подумать, что слой очень толстый, но это не так. После установки транзистора на радиатор по бокам выдавилось совсем чуть-чуть

Немного забегая вперед покажу, как выглядели радиатор и фланец после снятия транзистора

Хорошо видно, что слоем термопасты был заполнен весь зазор, но она не затекла между радиатором и изолентой (немного ее испачкал при отрывании транзистора).

После включения источника питания и небольшого ожидания, измеряю температуру радиатора, затем фланца транзистора и снова радиатора

По графику видно, что перепад температур ΔT примерно 43℃. Подставив в формулу
θ = (P*d) / (S*ΔT)
мощность P = 50 Вт, толщину слоя d = 0.15 мм и площадь 160 мм², получим значение теплопроводности θ = 1.1 Вт/(м*К). Это больше, чем указанное изготовителем значение, но тому есть простое объяснение. Изолентой прикрыта значительная часть фланца — примерно пятая часть, а её теплопроводность соизмерима с теплопроводностью пасты — примерно 0.3 Вт/(м*К). (Измерения теплопроводности изоленты были проведены мною в недавнем обзоре). Поэтому её нельзя считать идеальным теплоизолятором. Поток тепла через изоленту составит 0.3 Вт/(м*К) * 50 мм² * 43 К / 0.15 мм = 4.2 Вт. С учетом этой поправки теплопроводность КПТ-8 получается ровно 1 Вт/(м*К). Что же, производитель ни в чем не обманул, придраться не к чему :).

Следующая на очереди паста Prolimatech PK-3. Её заявленная теплопроводность 11.2 Вт/(м*К).

Тюбик куплен более 5 лет назад. Паста изначально очень густая и плохо прилипающая к поверхности, за время хранения эти свойства только усугубились. Нанести её тонким слоем нет никакой возможности, приходится накладывать кусочками, рассчитывая, что прижимом её распределит по всему зазару.

После установки транзистора на радиатор небольшое количество пасты выдавилось по краям

а после демонтажа я обнаружил вполне ровный отпечаток без «залезания» пасты на изоленту

Перепад температур с этой пастой в восемь раз ниже, чем с КПТ-8, и составляет примерно 5℃

Вычисленная в результате расчетов теплопроводность — 9.3 Вт/(м*К), что на 16% меньше заявленной. Можно не обращать внимание на это расхождение, списав на погрешности эксперимента. Можно предположить, что за время хранения свойства пасты немного ухудшились (лично мне это кажется маловероятным). Быть может, её слой, в силу большой густоты, оказался чуть толще. А может производитель немного слукавил, указав максимальное значение, которое несколько колеблется от партии к партии. А может это комбинация всех перечисленных и каких-то других факторов. В любом случае, полученное значение в 9 раз превосходит теплопроводность КПТ-8, и это существенно. 900%, а не 16%!

Читайте так же:
Как подключить электрическую духовку самостоятельно

И, наконец, последний участник теста — паста GELID GC-Extreme. На упаковке её теплопроводность не указана, на сайте изготовителя приводится значение 8.5 Вт/(м*К). Пасте также приблизительно 5 лет.

Паста также достаточно густая, но намного лучше, в сравнении с PK-3, липнет к поверхности, поэтому наносить её намного легче

Излишки по краям совсем маленькие, думал, что получилось очень точно угадать с количеством нанесенной пасты

Но после демонтажа увидел, что пасты чуть-чуть не хватило до верхнего края, там остались небольшие пустоты

Перепад температуры с этой пастой примерно 7℃

а полученное в результате расчетов значение теплопроводности 6.6 Вт/(м*К). Это опять меньше, чем заявлено производителем, но ко всем указанным выше причинам могу добавить еще одну — небольшие пустоты в слое из-за недостаточного количества пасты. Переделывать опыт поленился, даже такое значение довольно близко к заявленному.

Первый и самый очевидный вывод — термопасты из верхней ценовой группы действительно многократно превосходят по теплопроводности широко распространенную дешевую КПТ-8. В случае Prolimatech PK-3 отличие в 9 раз!

Важно ли это в практическом плане? Думаю, что однозначного ответа не существует. Если поверхности хорошо обработаны и зазор между ними может быть сведен к 10-20 микронам (именно до такой толщины я раздавил густую Prolimatech PK-3 при подготовке обзора), столь значительная разница в теплопроводности может вылиться в несущественные 1-2℃ даже при достаточно высокой рассеиваемой мощности и небольшой площади контакта. В случае транзистора, устанавливаемого непосредственно на радиатор, именно так у меня и получилось. Но уже при толщине слоя в 0.15 мм (а это не так уж и много, если основание радиатора имеет выгнутую форму) разница в температурах будет далеко не 1-2℃, а 5℃ в случае хорошей пасты и более 40℃ — с КПТ-8! Так что решение нужно принимать с учетом всех обстоятельств.

Какая теплопроводность у меди

1.3.2. Теплоемкость, теплопроводность материалов.

Теплоемкость , это способность накапливать тепловую энергию в материале при его нагревании . Численно удельная теплоемкость равна энергии, которую нужно ввести в единицу объема материала, чтобы нагреть его на один градус. Размерность удельной теплоемкости [Дж/(кг·К)]. Эта величина экстенсивная, т.е. можно говорить о теплоемкости отдельной молекулы или атома, затем их просуммировать и получить теплоемкость одного грамма или одного моля вещества. Значение теплоемкости зависит от природы материала. Самая высокая теплоемкость у воды 4.2 ·10 3 Дж/(кг·К) или 4.2 кДж/(кГ·К). У подавляющего большинства материалов удельная теплоемкость порядка 1 кДж/(кг·К). Теплоемкость зависит от температуры. Вблизи нуля Кельвина она мала, в рабочем диапазоне температур — слабо меняется с ростом температуры. Какие-либо скачки теплоемкости связаны со структурной перестройкой тел, например с растянутым плавлением у таких веществ, как парафин. Здесь можно упомянуть пример с парафиновой прогревающей повязкой, когда тепло долго сохраняется за счет высокой теплоемкости парафина и повязка греет длительное время.

Теплоемкость газов хорошо изучена теоретически. Для газов даже введено два типа теплоемкости: при постоянном давлении Cp и при постоянном объеме Cv. Обычно рассматривают теплоемкость, приходящуюся на одну молекулу. Тогда для одноатомного газа Cp=5/2 kT, а Cv=3/2 kT. Почему при постоянном давлении труднее нагревать молекулы? Ясно, что при этом газ расширяется, значит, нужна дополнительная энергия, чтобы нагревать газ при постоянном давлении. Отметим, что для многоатомных газов теплоемкость выше, т.к. при нагревании требуется энергия для вращения молекул, колебаний и т.п.

Приведем выражение для тепловой энергии материала:

где m-масса материала, T2,T1 конечная и начальная температуры.

Читайте так же:
Как плести сети для рыбалки схема

Это выражение можно переписать для локальных, удельных, параметров:

где Q/V — удельное выделение энергии, d — плотность материала.

Выражения (1.27-1.28) позволяют определить изменение температуры материала в процессе его работы, например, за счет диэлектрических потерь энергии, протекания тока или какого-либо другого процесса. Энерговыделение Q задается конкретными процессами, протекающими в материале.

Теплопроводность определяет способность передать тепловую энергию через материал. Это тоже важная характеристика, она характеризуется коэффициентом теплопроводности l . Численно он равен потоку q проходящему через площадку куба единичной площади, при перепаде на его гранях температуры 1 ° С. Лучше всего передают тепло металлы, так у меди l .=400 Вт/(м·К), для серебра чуть больше (418), для алюминия 200 Вт/(м·К), для нержавеющей стали примерно 20 Вт/(м·К), для простых сталей примерно в два раза выше.

У диэлектрических материалов теплопроводность обычно значительно ниже. Например у бетона l .=0.6 Вт/(м·К), у трансформаторного масла l .=0.13 Вт/(м· К), для воздуха l = 3,67 10 -2 Вт/(м·К). Единственный диэлектрик имеет высокую теплопроводность, это окись бериллия l .» 200 Вт/(м·К). Отметим, что в справочниках часто приводят l . в устаревших единицах, например кал/(см·сек· °С); для перевода в систему единиц СИ нужно умножить на 418.

Для газов и жидкостей обычная теплопроводность играет незначительную роль. В этом случае главную роль играют конвекция и излучение.

Конвекция возникает из-за того, что нагретые жидкость или газ расширяются, их плотность уменьшается, они начинают “всплывать” под действием выталкивающей силы Архимеда. За счет этого возникают локальные течения, которые эффективно уносят тепло из нагретой зоны. В теплотехнике развит аппарат расчета теплопроводности при учете конвекции. Грубо, можно сказать, что конвекция увеличивает теплопроводность в несколько раз.

Я занимался расчетами теплопроводности при разработке электроотопительных приборов на основе материала “ЭКОМ”. Так вот, учет естественной конвекции в воздухе приводит к увеличению эффективной теплопроводности в конвекторе из двух параллельно расположенных вертикальных пластин примерно в 10 раз при температуре поверхностей примерно 150 -200 ° С.

Тепловое излучение также важно, особенно при повышенных температурах. Основное выражение, используемое в оценках, имеет вид:

где x — коэффициент серости излучающего материала, s — постоянная Стефана-Больцмана, s =5.67 10 -8 Вт/(м 2 К 4 ). Коэффициент серости зависит от сорта материала, в особенности от его теплопроводности и состояния поверхности. Для металлов этот коэффициент невелик, он меняется от единиц до десятков процентов, в зависимости от шероховатости поверхности, причем более шероховатой поверхности соответствует больший коэффициент серости. Для диэлектриков (исключая специальные композиции с электропроводными компонентами), e находится в диапазоне 80 — 95%. Оценки показывают, что этот фактор становится главным при температурах порядка 100 градусов и выше.

Самая высокая теплопроводность в нормальном диапазоне температур может быть достигнута путем переноса теплоты испарения. Если где-то испарить жидкость, а затем ее конденсировать в другом месте, то теплота испарения заберет часть тепла от нагретого участка и передаст его при конденсации в другом месте. Это эквивалентно теплопроводности между этими участками. Оценки показывают, что эквивалентная теплопроводность может превысить теплопроводность меди примерно в пять тысяч раз.

Температурные коэффициенты. Практически все свойства материалов зависят от температуры. Обычно это учитывается введением т.н. температурного коэффициента. Строго математически для какого-либо свойства х, он вводится выражением

где х может быть любой характеристикой материала. Размерность любого температурного коэффициента — 1/К. Например возьмем в качестве х размер l образца материала. Тогда

означает температурный коэффициент расширения материала. Для диэлектрической проницаемости, это будет температурный коэффициент диэлектрической проницаемости, для удельного сопротивления — температурный коэффициент удельного сопротивления.

На практике обычно пользуются линейным приближением, считая изменение характеристики с температурой малым, по сравнению с основным значением. Для этого случая можно явно выписать температурную зависимость.

Для удельного сопротивления r (Т)= r (Т )(1 + Тк r (Т-Т ))

Для диэлектрической проницаемости e (Т)= e (Т )(1 + Тк e (Т-Т ))

Конкретные значения температурных коэффициентов материалов можно найти в справочниках. В случае сильного изменения характеристик с температурой (например, диэлектрической проницаемости в случае сегнетоэлектриков) линейным приближением пользоваться нельзя. В этих случаях следует воспользоваться таблицами или графиками.

Читайте так же:
Как сделать форму для грузил из свинца

Теплоемкость и теплопроводность металлов и сплавов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.
Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Теплопроводность цветных металлов и технических сплавов - таблица



Теплопроводность металлов и ее применение

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Читайте так же:
Как отрегулировать ножи на рубанке

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.



Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град). Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности металлов и сплавов - таблица

Коэффициент теплопроводности нержавеющей стали – Справочник металлиста

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло.

Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними.

В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава.

Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле.

Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС. Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Коэффициент теплопроводности сплавов - таблица

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град). Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость сплавов - таблица

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град). Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Удельная теплоемкость многокомпонентных специальных сплавов - таблица

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

Плотность сплавов - таблица

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector