Линейчатые поверхности с двумя направляющими и плоскостью параллелизма
Линейчатые поверхности с двумя направляющими и плоскостью параллелизма
В инженерной практике наибольшее распространение получили линейчатые поверхности, у которых одна из направляющих является несобственной прямой. На чертеже ее представителем является плоскость параллелизма. Образующая в своем движении пересекает две направляющие и параллельна некоторой плоскости S – плоскости параллелизма. Такие поверхности называют поверхностями Каталана. Определитель такой поверхности имеет вид Ф(S; k, l).
В зависимости от формы направляющих различают следующие поверхности Каталана: цилиндроид, коноид и гиперболический параболоид (косая плоскость). Цилиндроид – линейчатая поверхность с плоскостью параллелизма, у которой обе направляющие являются кривыми линиями. На рис. 11.2,а показан отсек (часть) цилиндроида, у которого плоскость параллелизма S – горизонтально проецирующая. На горизонтальной плоскости проекций образующие параллельны между собой и параллельны следу плоскости S(S1). Фронтальные проекции образующих построены исходя из условия пересечения направляющих k и l в соответствующих точках 1, 2, 3, …, 10. У коноида, в отличие от цилиндроида, одна из направляющих прямая. Гиперболический параболоид получается в результате перемещения прямой по двум скрещивающимся прямолинейным направляющим.
Образующая все время остается параллельной плоскости параллелизма. На рис. 11.2, б плоскость S – фронтально проецирующая и проекции образующих параллельны фронтальному следу плоскости S(S2).
Рассмотрим принадлежность точки поверхностям Каталана. Пусть задана фронтальная проекция точки A(A2), принадлежащей поверхности цилиндроида (рис. 11.2, а). Требуется построить горизонтальную проекцию точки А. В соответствии с условием принадлежности точки поверхности проведем через А2 проекцию линии m(m2), принадлежащей цилиндроиду. Так как линия m принадлежит поверхности, строим горизонтальные проекции точек пересечения кривой m с образующими цилиндроида. Множество полученных точек задают горизонтальную проекцию линии m(m1). Искомая проекция точки А(А1) будет расположена на m1.
Пусть теперь фронтальная проекция точки А(А2 ) задана на поверхности гиперболического параболоида. И в этом случае через А2 можно провести проекцию произвольной кривой m. Однако здесь известно, что проекции образующих параллельны следу плоскости S(S2). Тогда через А2 проводим проекцию образующей KL(K2L2) параллельно S2. Горизонтальную проекцию KL проводим через точки K1 и L1, принадлежащих направляющим k и l, соответственно. Искомая проекция точки А(А1) будет расположена на K1L1.
11.5.2. Коническая и цилиндрическая поверхности
Коническая поверхностьобразуется движением прямолинейной образующей по криволинейной направляющей. При этом образующая проходит через
некоторую неподвижную точку S, которая называется вершиной (рис. 11.3, а). Коническая поверхность является частным случаем линейчатых поверхностей общего вида, когда две направляющие, например l и m, пересекаются в точке S. Геометрическая часть определителя конической поверхности включает направляющую k и вершину S. В зависимости от вида направляющей коническая поверхность может быть замкнутой и незамкнутой.
Цилиндрическая поверхность получается в том случае, когда все прямолинейные образующие проходят через направляющую k и пересекаются в несобственной точке S (рис. 11.3, б). Геометрическая часть определителя конической поверхности включает направляющую k и несобственную вершину S (направляющий вектор). Цилиндрическая поверхность также может быть незамкнутой или замкнутой.
Точка А принадлежит данным поверхностям, так как она принадлежит образующим этих поверхностей. На конической поверхности она принадлежит образующей 2S, а на цилиндрической – образующей t.
Торс (поверхность с ребром возврата) образуется движением прямолинейной образующей, касающейся во всех своих положениях некоторой пространственной кривой, называемой ребром возврата (от франц. «tors») — витой, крученный).
Ребро возврата m является направляющей торса. Торс состоит из двух полостей, разделенных ребром возврата (рис. 11.4).
Если ребро возврата вырождается в точку, поверхность торса превращается в коническую поверхность. В случае, если ребро возврата является несобственной точкой, торсовая поверхность становится цилиндрической.
11.6. Гранные поверхности и многогранники
Гранной поверхностью на-зывается поверхность, образо-ванная перемещением прямоли-нейной образующей по ломаной направляющей. Гранные по-верхности можно разделить на два вида: пирамидальные (рис. 11.5, а) и призматические (рис.11.5, б).
Пирамидальной называется поверхность, образованная пере-мещением прямолинейной образующей по ломаной направляющей. При этом все образующие проходят через некоторую неподвижную точку S. Определитель поверхности – ломаная направляющая m и точка S.
Призматической называется поверхность, образованная перемещением прямолинейной образующей по ломаной направляющей. При этом все образующие проходят параллельно некоторому заданному направлению S. Определитель поверхности – ломаная направляющая m и направление S.
Точки A и B принадлежат пирамидальной и призматической поверхностям соответственно, так как принадлежат прямым, расположенным на этих поверхностях.
Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многоугольники поверхности называют гранями, стороны многоугольников – ребрами, а вершины многоугольников – вершинами многогранника. Рассмотрим два вида многогранников – пирамиду и призму.
Пирамида представляет собой многогранник (рис. 11.6 – это пример безосного чертежа), у которого одна грань — основание (произвольный многоугольник ABC). Остальные грани (боковые) — треугольники с общей вершиной S, называемой вершиной пирамиды. Точка D принадлежит поверхности пирамиды, так как лежит на прямой S1, принадлежащей боковой грани ASC.
Призмойназывается многогранник, у которого основания – равные многоугольники с соответственно параллельными сторонами. Боковые грани призмы — параллелограммы. Если ребра боковых граней перпендикулярны основанию, то призму называют прямой.
На рис. 11.7 приведен комплексный чертеж (безосный, как многие приведенные ниже) трехгранной призмы. Видимость ребра АВ определена по конкурирующим точкам 3 и 4. Точка 4 расположена выше точки 3, а значит, на П1 проекция точки 3 будет невидимой. Так как точка 3 принадлежит ребру 12, то оно также будет невидимым.
Точка D (рис. 11.7) принадлежит поверхности призмы, так как лежит на прямой 12, принадлежащей поверхности призмы.
Поверхности вращения
Поверхностью вращения называется поверхность, полученная при вращательном движении образующей (прямой или кривой) вокруг неподвижной прямой, называемой осью вращения (рис. 11.8). Геометрической частью определителя поверхности вращения является образующая и ось вращения. Каждая точка образующей n при своем вращении описывает окружность, плоскость которой перпендикулярна оси i, а центр расположен на оси. Эти окружности называются параллелями (на рис. 11.8 – например, окружность 1). Наименьшая из параллелей (окружность 2) называется горлом, а наибольшая (окружность 3) – экватором.
Плоскость, проходящая через ось вращения, называется меридианальной. Линия ее пересечения с поверхностью – меридианом. Если меридианальная плоскость параллельна плоскости проекций, то на эту плоскость меридиан проецируется без искажения. Такой меридиан называется главным.
На чертеже поверхность вращения однозначно задается своим определителем. Однако для наглядности чертеж поверхности дополняют очерками. На рис. 11.9 показано построение очерков для поверхности, заданной осью i (i ^П1) и образующей n. Возьмем на образующей n(n1, n2) произвольную точку 1(11, 12). При вращении образующей вокруг оси i(i1, i2), точка 1 опишет окружность, плоскость которой перпендикулярна оси, а центр расположен на оси. Так как ось поверхности перпендикулярна П1, то плоскость окружности параллельна П1 и окружность проецируется на П1 в окружность с центром i1, проходящую через точку 11. На П2 окружность проецируется в отрезок А2В2, перпендикулярный i2 и равный А1В1 (диаметру окружности). Точки А2 и В2 принадлежат фронтальному очерку поверхности. Выполнив описанные выше построения для других точек образующей n и соединив их плавной линией, получим фронтальный очерк m2 поверхности вращения. Горизонтальным очерком поверхности является окружность, проходящая через точки С1, D1.
Значение «линейчатые поверхности»
— Л. поверхностями называются поверхности, образуемые движением прямой линии. Напр., поверхность прямого круглого цилиндра есть Л., так как она может быть образована движением прямой, которая, оставаясь параллельной одному и тому же направлению, опирается на окружность, лежащую в плоскости, перпендикулярной к этому направлению; ряд последовательных положений такой прямой и представляет собой поверхность круглого прямого цилиндра. Движущаяся прямая называется образующей, а окружность, на которую она опирается, направляющей. Название образующей присваивается также каждому отдельному положению прямой, движением которой образуется поверхность. Л. поверхности разделяются на два больших класса: развертывающиеся и косые. К первому классу принадлежат такие поверхности, которые могут быть свернуты из плоскости, а, следовательно, могут быть и развернуты на плоскость; таковы поверхности цилиндрические, образующие которых параллельны одному и тому же направлению; поверхности конические, образующие которых проходят через одну общую точку, называемую вершиной; развертывающаяся винтовая поверхность, образующие которой касательны к винтовой линии, и целый ряд других поверхностей, отличающихся тем свойством, что образующие их касательны к некоторой кривой, называемой ребром возврата. Косые поверхности суть такие Л., которые не могут быть развернуты в плоскость; таковы: косая винтовая поверхность, образующие которой перпендикулярны к оси цилиндра и опираются на винтовую линию, начерченную на этом цилиндре; гиперболоид, образующие которого опираются на три данные прямые; гиперболический параболоид, образующие которого опираются на две данные прямые и параллельны данной плоскости (см. Косая плоскость), и так далее. Поверхности, образующие которых параллельны одной и той же плоскости, называются коноидами. Работы Плюккера и Болля выяснили весьма важное механическое значение одной из коноидальных поверхностей, названной цилиндроидом и играющей такую же роль в сложении винтовых движений и винтовых усилий, какую играет параллелограмм в сложении сил и скоростей (см. Цилиндроид).
Н. Д.
Смотрите также:
Синтаксический разбор «Мне потребуется вечность, чтобы всё объяснить.»
Морфологический разбор «линейчатые поверхности»
Фонетический разбор «линейчатые поверхности»
Значение «линейчатые поверхности»
Карточка «линейчатые поверхности»
Словари русского языка
Лексическое значение: определение
Общий запас лексики (от греч. Lexikos) — это комплекс всех основных смысловых единиц одного языка. Лексическое значение слова раскрывает общепринятое представление о предмете, свойстве, действии, чувстве, абстрактном явлении, воздействии, событии и тому подобное. Иначе говоря, определяет, что обозначает данное понятие в массовом сознании. Как только неизвестное явление обретает ясность, конкретные признаки, либо возникает осознание объекта, люди присваивают ему название (звуко-буквенную оболочку), а точнее, лексическое значение. После этого оно попадает в словарь определений с трактовкой содержания.
Словари онлайн бесплатно — открывать для себя новое
Словечек и узкоспециализированных терминов в каждом языке так много, что знать все их интерпретации попросту нереально. В современном мире существует масса тематических справочников, энциклопедий, тезаурусов, глоссариев. Пробежимся по их разновидностям:
- Толковые Найти значение слова вы сможете в толковом словаре русского языка. Каждая пояснительная «статья» толкователя трактует искомое понятие на родном языке, и рассматривает его употребление в контенте. (PS: Еще больше случаев словоупотребления, но без пояснений, вы прочитаете в Национальном корпусе русского языка. Это самая объемная база письменных и устных текстов родной речи.) Под авторством Даля В.И., Ожегова С.И., Ушакова Д.Н. выпущены наиболее известные в нашей стране тезаурусы с истолкованием семантики. Единственный их недостаток — издания старые, поэтому лексический состав не пополняется.
- Энциклопедические В отличии от толковых, академические и энциклопедические онлайн-словари дают более полное, развернутое разъяснение смысла. Большие энциклопедические издания содержат информацию об исторических событиях, личностях, культурных аспектах, артефактах. Статьи энциклопедий повествуют о реалиях прошлого и расширяют кругозор. Они могут быть универсальными, либо тематичными, рассчитанными на конкретную аудиторию пользователей. К примеру, «Лексикон финансовых терминов», «Энциклопедия домоводства», «Философия. Энциклопедический глоссарий», «Энциклопедия моды и одежды», мультиязычная универсальная онлайн-энциклопедия «Википедия».
- Отраслевые Эти глоссарии предназначены для специалистов конкретного профиля. Их цель объяснить профессиональные термины, толковое значение специфических понятий узкой сферы, отраслей науки, бизнеса, промышленности. Они издаются в формате словарика, терминологического справочника или научно-справочного пособия («Тезаурус по рекламе, маркетингу и PR», «Юридический справочник», «Терминология МЧС»).
- Этимологические и заимствований Этимологический словарик — это лингвистическая энциклопедия. В нем вы прочитаете версии происхождения лексических значений, от чего образовалось слово (исконное, заимствованное), его морфемный состав, семасиология, время появления, исторические изменения, анализ. Лексикограф установит откуда лексика была заимствована, рассмотрит последующие семантические обогащения в группе родственных словоформ, а так же сферу функционирования. Даст варианты использования в разговоре. В качестве образца, этимологический и лексический разбор понятия «фамилия»: заимствованно из латинского (familia), где означало родовое гнездо, семью, домочадцев. С XVIII века используется в качестве второго личного имени (наследуемого). Входит в активный лексикон. Этимологический словарик также объясняет происхождение подтекста крылатых фраз, фразеологизмов. Давайте прокомментируем устойчивое выражение «подлинная правда». Оно трактуется как сущая правда, абсолютная истина. Не поверите, при этимологическом анализе выяснилось, эта идиома берет начало от способа средневековых пыток. Подсудимого били кнутом с завязанными на конце узлом, который назывался «линь». Под линью человек выдавал все начистоту, под-линную правду.
- Глоссарии устаревшей лексики Чем отличаются архаизмы от историзмов? Какие-то предметы последовательно выпадают из обихода. А следом выходят из употребления лексические определения единиц. Словечки, которые описывают исчезнувшие из жизни явления и предметы, относят к историзмам. Примеры историзмов: камзол, мушкет, царь, хан, баклуши, политрук, приказчик, мошна, кокошник, халдей, волость и прочие. Узнать какое значение имеют слова, которые больше не употребляется в устной речи, вам удастся из сборников устаревших фраз. Архаизмамы — это словечки, которые сохранили суть, изменив терминологию: пиит — поэт, чело — лоб, целковый — рубль, заморский — иностранный, фортеция — крепость, земский — общегосударственный, цвибак — бисквитный коржик, печенье. Иначе говоря их заместили синонимы, более актуальные в современной действительности. В эту категорию попали старославянизмы — лексика из старославянского, близкая к русскому: град (старосл.) — город (рус.), чадо — дитя, врата — ворота, персты — пальцы, уста — губы, влачиться — волочить ноги. Архаизмы встречаются в обороте писателей, поэтов, в псевдоисторических и фэнтези фильмах.
- Переводческие, иностранные Двуязычные словари для перевода текстов и слов с одного языка на другой. Англо-русский, испанский, немецкий, французский и прочие.
- Фразеологический сборник Фразеологизмы — это лексически устойчивые обороты, с нечленимой структурой и определенным подтекстом. К ним относятся поговорки, пословицы, идиомы, крылатые выражения, афоризмы. Некоторые словосочетания перекочевали из легенд и мифов. Они придают литературному слогу художественную выразительность. Фразеологические обороты обычно употребляют в переносном смысле. Замена какого-либо компонента, перестановка или разрыв словосочетания приводят к речевой ошибке, нераспознанному подтексту фразы, искажению сути при переводе на другие языки. Найдите переносное значение подобных выражений в фразеологическом словарике. Примеры фразеологизмов: «На седьмом небе», «Комар носа не подточит», «Голубая кровь», «Адвокат Дьявола», «Сжечь мосты», «Секрет Полишинеля», «Как в воду глядел», «Пыль в глаза пускать», «Работать спустя рукава», «Дамоклов меч», «Дары данайцев», «Палка о двух концах», «Яблоко раздора», «Нагреть руки», «Сизифов труд», «Лезть на стенку», «Держать ухо востро», «Метать бисер перед свиньями», «С гулькин нос», «Стреляный воробей», «Авгиевы конюшни», «Калиф на час», «Ломать голову», «Души не чаять», «Ушами хлопать», «Ахиллесова пята», «Собаку съел», «Как с гуся вода», «Ухватиться за соломинку», «Строить воздушные замки», «Быть в тренде», «Жить как сыр в масле».
- Определение неологизмов Языковые изменения стимулирует динамичная жизнь. Человечество стремятся к развитию, упрощению быта, инновациям, а это способствует появлению новых вещей, техники. Неологизмы — лексические выражения незнакомых предметов, новых реалий в жизни людей, появившихся понятий, явлений. К примеру, что означает «бариста» — это профессия кофевара; профессионала по приготовлению кофе, который разбирается в сортах кофейных зерен, умеет красиво оформить дымящиеся чашечки с напитком перед подачей клиенту. Каждое словцо когда-то было неологизмом, пока не стало общеупотребительным, и не вошло в активный словарный состав общелитературного языка. Многие из них исчезают, даже не попав в активное употребление. Неологизмы бывают словообразовательными, то есть абсолютно новообразованными (в том числе от англицизмов), и семантическими. К семантическим неологизмам относятся уже известные лексические понятия, наделенные свежим содержанием, например «пират» — не только морской корсар, но и нарушитель авторских прав, пользователь торрент-ресурсов. Вот лишь некоторые случаи словообразовательных неологизмов: лайфхак, мем, загуглить, флэшмоб, кастинг-директор, пре-продакшн, копирайтинг, френдить, пропиарить, манимейкер, скринить, фрилансинг, хедлайнер, блогер, дауншифтинг, фейковый, брендализм. Еще вариант, «копираст» — владелец контента или ярый сторонник интеллектуальных прав.
- Прочие 177+ Кроме перечисленных, есть тезаурусы: лингвистические, по различным областям языкознания; диалектные; лингвострановедческие; грамматические; лингвистических терминов; эпонимов; расшифровки сокращений; лексикон туриста; сленга. Школьникам пригодятся лексические словарники с синонимами, антонимами, омонимами, паронимами и учебные: орфографический, по пунктуации, словообразовательный, морфемный. Орфоэпический справочник для постановки ударений и правильного литературного произношения (фонетика). В топонимических словарях-справочниках содержатся географические сведения по регионам и названия. В антропонимических — данные о собственных именах, фамилиях, прозвищах.
Толкование слов онлайн: кратчайший путь к знаниям
Проще изъясняться, конкретно и более ёмко выражать мысли, оживить свою речь, — все это осуществимо с расширенным словарным запасом. С помощью ресурса How to all вы определите значение слов онлайн, подберете родственные синонимы и пополните свою лексику. Последний пункт легко восполнить чтением художественной литературы. Вы станете более эрудированным интересным собеседником и поддержите разговор на разнообразные темы. Литераторам и писателям для разогрева внутреннего генератора идей полезно будет узнать, что означают слова, предположим, эпохи Средневековья или из философского глоссария.
Глобализация берет свое. Это сказывается на письменной речи. Стало модным смешанное написание кириллицей и латиницей, без транслитерации: SPA-салон, fashion-индустрия, GPS-навигатор, Hi-Fi или High End акустика, Hi-Tech электроника. Чтобы корректно интерпретировать содержание слов-гибридов, переключайтесь между языковыми раскладками клавиатуры. Пусть ваша речь ломает стереотипы. Тексты волнуют чувства, проливаются эликсиром на душу и не имеют срока давности. Удачи в творческих экспериментах!
Значение ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ в Большой советской энциклопедии, БСЭ
поверхность , совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по некоторой линии (направляющей). Л. п. разделяются на развёртывающиеся и косые.
Развёртывающиеся Л. п. могут быть посредством изгибания наложены на плоскость. Любая развёртывающаяся поверхность является либо цилиндром, либо конусом, либо поверхностью, состоящей из касательных к некоторой пространственной кривой (1) ( рис. 1 ). Эту кривую называют ребром возврата развёртывающейся поверхности. Плоскость P, пересекающая ребро возврата (L), образует в сечении с поверхностью кривую ABC с точкой возврата В (см. Особые точки ) . Ребро возврата является особой линией развёртывающейся поверхности, вдоль которой две её полости S1 и S2 касаются друг друга. Развёртывающиеся поверхности характеризуются также тем, что касательная плоскость к ним в различных точках одной и той же образующей неизменна. Отсюда следует, что совокупность всех касательных плоскостей развёртывающейся Л. п. представляет собой однопараметрическое семейство. Иначе говоря, развёртывающаяся Л. п. является огибающей однопараметрического семейства плоскостей.
У косой Л. п. касательные плоскости в различных точках одной и той же образующей различны. При перемещении точки касания вдоль образующей касательная плоскость вращается вокруг образующей. Полный поворот касательной плоскости, когда точка касания проходит всю образующую, равен 180|. На каждой образующей имеется такая точка, что для каждой из двух частей, на которые она делит образующую, полный поворот касательной плоскости равен 90|. Эту точку (на рис. 2 — точка О) называют центром образующей. Тангенс угла между касательными плоскостями к поверхности в центре О и какой-либо другой точке O' той же образующей пропорционален расстоянию OO'. Множитель пропорциональности называется параметром распределения Л. п. Абсолютная величина полной кривизны Л. п. достигает на данной образующей наибольшего значения в центре образующей и убывает при удалении от центра по образующей. Геометрическое место центров образующих носит название линии сжатия, или стрикционной линии. Например, у геликоида — Л. п., описываемой равномерным винтовым движением прямой вокруг некоторой оси (которую движущаяся прямая пересекает под прямым углом), — линией сжатия является ось (AB на рис. 2 ). Л. п. 2-го порядка — гиперболический параболоид , однополостный гиперболоид — имеют две различные системы прямолинейных образующих (из однополостных гиперболоидов сконструирована радиомачта системы В. Г. Шухова, находящаяся в Москве на Шаболовке). Две системы прямолинейных образующих имеют только Л. п. 2-го порядка.
Изгибаемые друг на друга Л. п. можно катить одну по другой так, что в процессе качения они будут иметь общую образующую. На этом основано применение Л. п. в теории механизмов. См. также Линейчатая геометрия .
Лит.: Фиников С. П., Теория поверхностей, М. — Л., 1934; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969.
Какие поверхности называют линейчатыми
Поверхность можно рассматривать, как совокупность последовательных положений l1,l2 … линии l перемещающейся в пространстве по определенному закону ( рис. 93 ) . В процессе образования поверхности линия l может оставаться неизменной или менять свою форму — изгибаться или деформироваться. Для наглядности изображения поверхности на эпюре Монжа закон перемещения линии l целесообразно задавать графически в одной линии или целого семейства линий ( m, n, p. ) . Подвижную линию принято называть образующей , неподвижные — направляющими . Такой способ образования поверхности принято называть кинематическим .
Примером такого способа могут служить все технологические процессы обработки металлов режущей кромкой, когда поверхность изделия несет на себе «отпечаток» режущей кромки резца, т.е. её поверхность можно рассматривать как множество линий конгруэнтных профилю резца.
По виду образующей различают поверхности линейчатые и нелинейчатые , образующая первых – прямая линия, вторых – кривая.
Линейчатые поверхности в свою очередь разделяют на так называемые развертывающие , которые можно без складок и разрывов развернуть на плоскость и неразвертывающиеся .
Значительный класс поверхностей формируется движением окружности постоянного или переменного радиуса. Это так называемые циклические поверхности (рис. 94 ).
Если же группировать поверхности по закону движения образующей линии и производящей поверхности, то большинство встречающихся в технике поверхностей можно разделить на:
Особое место занимают такие нелинейные поверхности, образование которых, не подчинено ни какому закону. Оптимальную форму таких поверхностей определяют теми физическими условиями, в которых они работают и устанавливают ее форму экспериментально (поверхности лопастей турбин, обшивка каркасов морских судов и самолетов).
Для графического изображения поверхности на чертеже используется её каркас .
Множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества, называется каркасом поверхности.
Поверхность может быть задана и конечным множеством точек, которое принято называть точечным каркасом .
Проекции каркаса могут быть построены, если задан определитель поверхности – совокупность условий, задающих поверхность в пространстве и на чертеже.
Различают две части определителя: геометрическую и алгоритмическую.
Геометрическая часть определителя представляет собой набор постоянных геометрических элементов (точек, прямых, плоскостей и т.п.), которые могут и не входить в состав поверхности.
Вторая часть – алгоритмическая (описательная) – содержит перечень операций, позволяющий реализовать переход от фигуры постоянных элементов к непрерывному каркасу.
Например, циклическая поверхность, каркас которой состоит из окружностей (рис. 95 ), может быть задан следующим образом:
· Геометрическая часть определителя: три направляющих l, m, n, ось i пучка плоскостей .
· Алгоритмическая часть: выделяем из пучка плоскостей с осью i плоскость α ; находим точки А, В, С, в которых α пересекает соответственно направляющие l, m, n. Строим окружность, определяемую тремя найденными точками. Переходим к следующей плоскости пучка и повторяем построение.