Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние легирующих элементов на свариваемость металлов

Влияние легирующих элементов на свариваемость металлов

При сварке металлов, имеющих различные легирующие элементы (Молибден, Кремний, Хром и др.) могут возникать различные проблемы, влияющие непосредственно на качество полученного сварного соединения (трещины, поры, непровары и т.д.). Для того, чтобы избежать трудностей и проблем, необходимо очень хорошо знать, как влияет тот или иной легирующий элемент на свариваемость изделия.

Знание влияния легирующих элементов на свариваемость различных сталей поспособствует лучшему пониманию процессов сварки.

Углерод
Один из самых значительных химических элементов в сталях.
Содержание углерода в сталях влияет на прочность, закаливаемость, вязкость, свариваемость.
У низкоуглеродистых сталей (углерода менее 0,25%) свариваемость практически не ухудшается.
При увеличении содержания углерода свариваемость резко ухудшается, так как в зонах ЗТВ (зонах термического влияния) возникает большое количество закалочных структур, которые вызывают трещины.

При высоком содержании углерода в присадочном материале увеличивается вероятность образования пор.

Марганец
Марганец является хорошим раскислителем. Электроды или проволоку необходимо применять при сварке в среде СО2. При содержании марганца в металле до 0,8 %, процесс сварки не усложняется. При увеличении содержания стали в металле (1,8%-2,5%) появляется опасность возникновения ХТ (холодных трещин), т.к. марганец способствует появлению хрупких структур (закалочных). При повышенном содержании марганца (11-16%) во время сварки происходит интенсивное выгорание данного вещества. Следовательно, необходимо применять специальные меры, например, использовать сварочные материалы с бОльшим содержанием марганца.

Кремний
Так же как и марганец является хорошим раскислителем. При малом количестве кремний (до 0,03%) на свариваемость не влияет. При содержании кремния 0,8-1,5% свариваемость ухудшается из-за повышенной жидкотекучести кремнистой стали и образования тугоплавких оксидов кремния. При повышенном содержании кремния, из-за увеличенной жидкотекучести особенно опасно появление горячих трещин.

Хром
Содержание хрома в сталях способствует увеличению коррозионной стойкости. Но, при сварке сталей образуются карбиды хрома, которые увеличивают твердость в ЗТВ (зоне термического влияния). Также образуются тугоплавкие окислы, которые затрудняют процесс сварки, а значит ухудшают свариваемость.

Никель
Содержание никеля в сталях способствует увеличению ударной вязкости, которая особенно важная при работе сталей при низких температурах. Также никель способствует увеличению пластичности, прочности стали и измельчению зерна. При этом свариваемость стали не ухудшается. Но, из-за высокой цены данного легирующего элемента, применение ограничено экономическими соображениями.

Молибден
Содержание молибдена в сталях увеличивает несущую способность при высоких температурах и ударных нагрузках, измельчает зерно.
С другой стороны, молибден способствует образованию трещин в ЗТВ и наплавленном металле шва.
Во время сварке окисляется и выгорает. Следовательно, необходимо использовать специальные меры.

Вольфрам
Содержание вольфрама в сталях резко увеличивает твердость стали и ее работоспособность при высоких температурах (красностойкость).
С другой стороны, вольфрам затрудняет процесс сварки и активно окисляется.

Читайте так же:
Как припаять провода без паяльника

Ванадий
Содержание ванадия в сталях резко увеличивает закаливаемость стали. Из-за закаливаемости, а также из-за окисления ванадия и его выгорания, ухудшается свариваемость сталей.

Титан
Использование титана как легирующий элемент обусловлено его высокой коррозионной стойкостью.

Ниобий
Использование ниобия, аналогично титану, обусловлено его высокой коррозионной стойкостью. При сварке сталей ниобий способствует образованию горячих трещин.

Свариваемость сталей

Стали являются самыми широко применяемыми конструкционными материалами. При строительстве мостов, зданий и многих других строительных конструкций сталь необходимо сваривать. Конструкционная прочность стальной конструкции зависит не только от прочности стали, но также и от прочности сварных швов. Вот почему свариваемость стали всегда является очень важным вопросом.

Влияние содержания углерода на свариваемость стали

Многие низкоуглеродистые стали легко свариваются. Сварка среднеуглеродистых и высокоуглеродистых сталей представляет собой более трудную задачу, так при сварке зоне термического влияния сварки может образовываться мартенсит, что приведет к значительному снижению вязкости сварного шва.

Для повышения свариваемости сталей предпринимают различные меры, такие как подогрев материала или минимизация поглощения сталью водорода. Поглощение сталью водорода делает сталь более хрупкой.

Свариваемость низкоуглеродистых сталей

В низкоуглеродистых сталях прочность сварных участков является более высокой, чем у основного металла. Это связано с тем, что при охлаждении зоны термического влияния сварки в ней образуется мелкодисперсная перлитная структура. Кроме того, остаточный аустенит вдоль границ перлитных зерен сдерживает кристаллизацию и поэтому способствует сохранению мелкого зерна, что также дает вклад в повышение прочности сварного участка.

Превращения стали в зоне сварного шва

В ходе сварки сталь вблизи сварного шва разогревается выше критической температуры А1 и образуется аустенит (рисунок а). При охлаждении аустенит в этой нагретой зоне превращается в новую структуру, тип которой зависит от скорости охлаждения и диаграммы термокинетического превращения стали.

Обыкновенная низкоуглеродистая сталь имеет настолько низкую закаливаемость, что при обычных скоростях охлаждения на воздухе мартенсит почти никогда не образуется (рисунок б).

Легированную же сталь перед сваркой специально подогревают, чтобы снизить скорость охлаждения сварного шва или подвергают сварное соединение дополнительной термической обработке для отпуска образовавшегося мартенсита (рисунок в).

Рисунок – Превращения стали в зоне термического влияния сварки:
а) структура стали при максимальной температуре нагрева в зоне сварки;
б) структура стали с низкой закаливаемостью в зоне сварки после охлаждения;
в) структура стали с высокой закаливаемостью в зоне сварки после охлаждения.

Свариваемость закаленной стали

Свариваемость стали, которая перед сваркой подвергалась закалке и отпуску, имеет два рода проблем. Во-первых, участок зоны термического влияния сварного шва, который нагревается выше температуры А1, может при охлаждении образовывать мартенсит. Во-вторых, участок зоны термического влияния сварного шва, который нагрелся ниже температуры А1, может подвергнуться чрезмерному отпуску. По-хорошему, сталь в закаленном и отпущенном состоянии сваривать нельзя.

Читайте так же:
Как отрегулировать редуктор воды в квартире

Эквивалентное содержание углерода — Equivalent carbon content

Концепция эквивалентного содержания углерода используется для черных металлов, обычно стали и чугуна , для определения различных свойств сплава, когда в качестве легирующего вещества используется не только углерод , что является типичным. Идея состоит в том, чтобы преобразовать процентное содержание легирующих элементов, отличных от углерода, в эквивалентное процентное содержание углерода, поскольку фазы железо-углерод изучены лучше, чем другие фазы сплава железа. Чаще всего это понятие используется при сварке , но оно также применяется при термообработке и литье чугуна.

СОДЕРЖАНИЕ

Стали

При сварке эквивалентное содержание углерода (CE) используется для понимания того, как различные легирующие элементы влияют на твердость свариваемой стали. Тогда это напрямую связано с индуцированным водородом холодным растрескиванием , которое является наиболее распространенным дефектом сварного шва для стали, поэтому его чаще всего используют для определения свариваемости . Более высокие концентрации углерода и других легирующих элементов, таких как марганец , хром , кремний , молибден , ванадий , медь и никель, имеют тенденцию к увеличению твердости и снижению свариваемости. Каждый из этих элементов имеет тенденцию влиять на твердость и свариваемость стали в разной степени, тем не менее, что делает метод сравнения необходимым для оценки разницы в твердости между двумя сплавами, состоящими из разных легирующих элементов. Есть две часто используемые формулы для расчета эквивалентного содержания углерода. Один разработан Американским сварочным обществом (AWS) и рекомендован для конструкционных сталей, а другой — формула, основанная на Международном институте сварки (IIW).

AWS заявляет, что при эквивалентном содержании углерода выше 0,40% существует вероятность растрескивания в зоне термического влияния (HAZ) на кромках и сварных швах, вырезанных пламенем . Однако стандарты проектирования конструкций редко используют CE, а скорее ограничивают максимальное процентное содержание определенных легирующих элементов. Эта практика началась еще до того, как появилась концепция CE, поэтому ее продолжают использовать. Это привело к проблемам, поскольку в настоящее время используются некоторые высокопрочные стали с CE выше 0,50%, которые имеют хрупкие разрушения.

Другой и наиболее популярной формулой является формула Дирдена и О’Нила, которая была принята IIW в 1967 году. Эта формула была признана подходящей для прогнозирования прокаливаемости в большом диапазоне обычно используемых углеродистых и углеродисто-марганцевых сталей, но не для микролегированные высокопрочные низколегированные стали или низколегированные хромомолибденовые стали. Формула определяется следующим образом:

Для этого уравнения свариваемость на основе диапазона значений CE может быть определена следующим образом:

Углеродный эквивалент (CE)Свариваемость
До 0,35Отлично
0,36–0,40Очень хороший
0,41–0,45Хорошо
0,46–0,50Справедливая
Более 0,50Бедные
Читайте так же:
Как правильно спаять наушники с микрофоном

Японское общество сварщиков приняло критический параметр металла (Pcm) для растрескивания сварного шва, который был основан на работе Ито и Бессио:

Если некоторые значения недоступны, иногда используется следующая формула:

Углеродный эквивалент — это мера склонности сварного шва к образованию мартенсита при охлаждении и к хрупкому разрушению. Если углеродный эквивалент составляет от 0,40 до 0,60, может потребоваться предварительный нагрев сварного шва. Когда углеродный эквивалент выше 0,60, необходим предварительный нагрев, может потребоваться последующий нагрев.

Следующая формула углеродного эквивалента используется для определения того , откажет ли точечная сварка высокопрочной низколегированной стали из-за чрезмерной прокаливаемости:

Где UTS — предел прочности на разрыв в тысячах фунтов на квадратный дюйм, а h — толщина полосы в дюймах. Значение CE 0,3 или меньше считается безопасным.

Юриока разработал специальный углеродный эквивалент, который может определять критическое время в секундах Δt 8-5 для образования мартенсита в зоне термического влияния (HAZ) в низкоуглеродистых легированных сталях. Уравнение имеет вид:

Тогда критическую продолжительность времени в секундах Δt 8-5 можно определить следующим образом:

Чугун

Для чугуна концепция эквивалентного содержания углерода (CE) используется для понимания того, как легирующие элементы повлияют на термическую обработку и поведение отливки. Он используется в качестве показателя прочности чугунов, поскольку дает приблизительный баланс аустенита и графита в конечной структуре. Существует ряд формул для определения CE в чугунах, в которые входит все большее количество элементов:

Этот CE затем используется для определения, является ли сплав доэвтектическим , эвтектическим или заэвтектическим ; для чугунов эвтектика составляет 4,3% углерода. При литье чугуна это полезно для определения окончательной зернистой структуры; например, заэвтектический чугун обычно имеет крупнозернистую структуру и образуются крупные чешуйки киш-графита . Кроме того, при увеличении CE уменьшается усадка . При термообработке чугуна различные образцы CE испытываются, чтобы эмпирически определить корреляцию между CE и твердостью. Ниже приведен пример серого чугуна с индукционной закалкой:

Влияние химического состава на свариваемость арматурной стали

Арматурой принято называть металлические и неметаллические стержни различного сечения и формы, а также канаты и пряди, используемые для армирования железобетонных конструкций.

Арматурный каркас, благодаря своей рифлёной поверхности, надёжно удерживает бетон. За счёт этого объекты, построенные по технологии монолитного бетонирования, отличаются прочностью. К таковым относятся не только здания гражданского и промышленного назначения, но и стратегически важные объекты, такие как дамбы, мосты, плотины, здания аэропортов. Наиболее распространенной арматурой на сегодняшний день является А500С — это класс горячекатаной термомеханически упрочненной арматурной стали, изготавливаемой по СТО АСЧМ 7-93 или ГОСТ Р 52544-2006.

Первые пробные партии арматуры А500С были изготовлены на Западно-Сибирском комбинате в 1993 году. Новая марка стали изготавливалась по СТО АСЧМ 7-93 (стандарт ассоциации предприятий и организаций по стандартизации продукции чёрной металлургии — «Черметстандарт») и не имела аналогов по ГОСТ 5781-82. По мере накопления положительного опыта арматура А500С стала применяться наряду и взамен арматуры класса А3 (А400).

Читайте так же:
Как проверить утюг мультиметром

В 2006 году появился государственный стандарт (ГОСТ Р 52544) на термомеханически упрочненную арматурную сталь класса А500С (горячекатаную) и В500С (холоднокатаную).

Арматура А500С имеет ряд преимуществ перед арматурой А400. Арматура А500С изготавливается из дешевой (по сравнению с арматурой А3) углеродистой стали без использования легирующих элементов, что позволило снизить стоимость такой арматуры.

За счёт термомеханического упрочнения арматура А500С имеет повышенный предел текучести не менее 500 Н/мм2, что увеличивает прочность и гибкость одновременно.

Арматура А500С обладает повышенной по сравнению с арматурой А3 (А400) свариваемостью, что позволяет использовать дуговую сварку.

Арматура А500С имеет химический состав, определяемый содержанием углерода в стали не более 0,22 % и углеродным эквивалентом не более 0,5 %.

Производство арматуры А500С происходит из стали марок Ст3СП, Ст3ПС и Ст3ГПС. Нормированный показатель текучести для такой стали превышает 500 МПа, согласно СТО АСЧМ 7-93.

Арматура, термически упрочненная имеет куда более совершенные показатели пластичности и хладостойкости, чем марка 35ГС. Минимизация использования, а лучше полный отказ от использования стали 35ГС как увеличит прочность и надежность конструкций, так и обеспечит безопасность при строительстве.

Характеристики стали Ст3СП, Ст3ПС обеспечивают хорошую свариваемость.

Пожалуй, наиболее значимое преимущество использования арматуры А500С – это допуск на сварку с помощью электродуговых сварочных устройств. Именно буква «С» в обозначении класса арматуры говорит о возможности её сваривания.

Свариваемость стали зависит от ее химического состава и в первую очередь от содержания в ней углерода. По содержанию углерода стали разделяют на следующие группы: малоуглеродистые, содержащие от 0,05 до 0,25% углерода; среднеуглеродистые, содержащие от 0,25 до 0,6% углерода; высокоуглеродистые, содержащие свыше 0,6% углерода.

Малоуглеродистые, а также среднеуглеродистые стали с содержанием углерода не более 0,35% свариваются очень хорошо. Чем выше содержание углерода, тем хуже сваривается сталь обычным методом. При содержании углерода свыше 0,35% сталь склонна давать трещины при сварке и требует применения подогрева и спе­циальных приемов сварки.

Марганец увеличивает прочность и твердость стали, а так­же ее склонность к закалке. Содержание марганца в малоуглеродистой стали обычно колеблется в пределах от 0,35 до 0,8%. Если марганца содержится более 1%, то при сварке образуются тугоплавкие шлаки, которые в виде включений иногда остаются в наплавленном металле.

В некоторых специальных сталях содержание марганца повышают до 1,8—2,5%; при таком содержании марганец увеличивает закаливаемость стали и может вызывать образование трещин при сварке. Высокомарганцовистые стали содержат 11—16% марганца.

Читайте так же:
Как работает винтовой насос

Кремний содержится в мало и среднеуглеродистой стали в пределах от 0,03 до 0,04% и вводится в нее как раскислитель. Он способствует равномерному распределению отдельных химических элементов в металле шва. При содержании кремния более 0,5% образуются тугоплавкие шлаки, затрудняющие сварку. При содержании кремния от 0,8 до 1,5% сталь становится более упругой, однако при увеличении содержания кремния свыше 1,6% пластичность стали уменьшается, повышается ее твердость и хрупкость.

Сера является крайне вредной примесью в стали и оказывает резко отрицательное влияние на ее свариваемость, вызывая образование горячих трещин. Содержание серы в стали не должно превышать 0,04—0,05%.

Фосфор также является вредной примесью в стали, так как образует фосфористое железо, более хрупкое, чем сталь. Содержание в стали фосфора в пределах 0,1—0,2% делает ее хрупкой при обычной температуре (хладноломкой), поэтому содержание фосфора не должно превышать 0,04—0,05%. Чем выше содержание углерода в стали, тем заметнее вредное влияние фосфора.

Хром, молибден, никель, ванадий, вольфрам, титан и ниобий являются примесями, вводимыми в состав легированных сталей для придания им специальных свойств.

Так как химический состав арматурной стали в соответствии с ГОСТ Р 52544-2006 имеет довольно широкие пределы, что в свою очередь влияет на свариваемость арматуры и повышенное образование дефектов (шлаковые включения, поры, трещины).

01митин.png

02митин.png

Поэтому необходимо контролировать не только физико-механические свойства, но и химический состав арматуры, поступающей на строительные площадки, особенно при изготовлении арматурных каркасов с применением электродуговой сварки при выполнении стыковки арматуры и крепления ее к раме пространственного каркаса.

Для проверки физико-механических свойств и химического состава арматурной стали специалистами отдела обследований и экспертиз несущих и ограждающих конструкций и испытательного лабораторного центра в рамках государственного задания проводится работа 1.9.5 «Оценка соответствия класса арматурной стали требованиям технических регламентов и проектной документации». В рамках данной работы проводится отбор проб арматуры, применяемой при устройстве арматурного каркаса, выбранного для проведения работы, с последующим изготовлением необходимого количества образцов для испытания. По результатам которого оформляется заключение с выводом о соответствии (не соответствии) применяемой арматуры требованиям технических регламентов и проектной документации.

Таким образом, при соблюдении технологии ведения сварочных работ и наличии должного строительного и операционного контроля, качество сварных соединений как правило соответствует или имеет не существенные отклонения от норм технических регламентов и нормативной документации, но в тоже время следует обратить особое внимание на сварные соединения в которых применяется арматурная сталь с повышенным содержанием кремния и марганца (не выходящих за пределы, установленные ГОСТ 52544-2006).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector