Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

136. Факторы, влияющие на теплопроводность теплоизоляционных материалов

136. Факторы, влияющие на теплопроводность теплоизоляционных материалов.

Теплопроводность материала — это стационарные процессы внутри него и способность передавать тепло сквозь свою толщу. Теплопроводностью в чистом виде обладают лишь твердые тела. Теплота передается от одного материала к другому только при непосредственном их контакте. Согласно нормативным требованиям, теплоизоляционными считаются материалы теплопроводность которых не более 0,175 8т/(м»*С) при температуре 25вС и плотность не более 600 кг/м3.

Количественно теплопроводность характеризуется коэффициентом теплопроводности X Вт/(м»°С), который выражает количество тепла, проходящего через образец материала толщиной 1 м и площадью 1 м2 при разности температур на противоположных поверхностях ГС за 1 час. Теплопроводность строительных материалов напрямую зависит от их плотности, пористости, структуры и формы пор, температуры, влажности, фазового состава влаги и других факторов.

Увеличение количества мелких и замкнутых пор всегда существенно снижает теплопроводность. В крупных порах, а особенно в сообщающихся между собой, возникают конвективные потоки воздуха, снижающие теплоизоляционный эффект пористости. Заметную роль играют не только общая пористость, но и форма, размер и ориентация пор, поскольку направление потока тепла и излучения внутри пор оказывают большое влияние на общую теплопроводность материала.

Существенное значение для теплопроводности имеет химическая природа веществ, входящих в состав материала. Причем, чем тяжелее атомы или атомные группы, образующие кристаллы материала, тем слабее они между собой связаны и тем меньше теплопроводность материала.

137. Основные свойства теплоизоляционных материалов. Марки по средней плотности.

Свойства теплоизоляционных материалов применительно к строительству характеризуются следующими основными параметрами.

На величину теплопроводности теплоизоляционных материалов оказывают влияние плотность материала, вид, размеры и расположение пор (пустот) и т.д. Сильное влияние на теплопроводность оказывает также температура материала и, особенно, его влажность.

Методики измерения теплопроводности в различных странах значительно отличаются друг от друга, поэтому при сравнении теплопроводностей различных материалов необходимо указывать, при каких условиях проводились измерения.

Плотность— отношение массы сухого материала к его объему, определенному при заданной нагрузке (кг/м 3 ).

Прочность на сжатие— это величина нагрузки (КПа), вызывающей изменение толщины изделия на 10%.

Сжимаемость— способность материала изменять толщину под действием заданного давления. Сжимаемость характеризуется относительной деформацией материала под действием нагрузки 2 КПа.

Водопоглощение— способность материала впитывать и удерживать в порах (пустотах) влагу при непосредственном контакте с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое впитывает сухой материал при выдерживании в воде, отнесенным к массе или объему сухого материала.

Для снижения водопоглощения ведущие производители теплоизоляционных материалов вводят в них гидрофобизирующие добавки.

Сорбционная влажность— равновесная гигроскопическая влажность материала при определенных условиях в течение заданного времени. С повышением влажности теплоизоляционных материалов повышается их теплопроводность.

Морозостойкость— способность материала в насыщенном влагой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ.

Паропроницаемость— способность материала обеспечивать диффузионный перенос водяного пара.

Диффузия пара характеризуется сопротивлением паропроницаемости (кг/м 2 ·ч· Па). Паропроницаемость ТИМ во многом определяет влагоперенос через ограждающую конструкцию в целом. В свою очередь последний является одним из наиболее существенных факторов, влияющих на термическое сопротивление ограждающей конструкции.

Во избежание накопления влаги в многослойной ограждающей конструкции и связанного с этим падения термического сопротивления паропроницаемость слоёв должна расти в направлении от тёплой стороны ограждения к холодной.

Воздухопроницаемость. Теплоизолирующие свойства тем выше, чем ниже воздухопроницаемостьТИМ. Мягкие изоляционные материалы настолько хорошо пропускают воздух, что движение воздуха приходится предотвращать путем применения специальной ветрозащиты. Жесткие изделия, в свою очередь, обладают хорошей воздухонепроницаемостью и не нуждаются в каких-либо специальных мерах. Они сами могут применяться в качестве ветрозащиты.

Читайте так же:
Как варить чугун полуавтоматом

При устройстве теплоизоляции наружных стен и других вертикальных конструкций, подвергающихся напору ветра, следует помнить, что при скорости ветра 1 м/с и выше целесообразно оценить необходимость ветрозащиты.

Огнестойкость— способность материала выдерживать воздействие высоких температур без воспламенения, нарушения структуры, прочности и других его свойств.

По группе горючести теплоизоляционные материалы подразделяют на горючие и негорючие. Это является одним из важнейших критериев выбора теплоизоляционного материала.

В отличие от многих других строительных материалов, марка теплоизоляционного материала отражает величину не прочности, а средней плотности, которая выражается в кг/м3 (р0). Согласно этому показателю ТИМ имеют следующие марки:

 особо низкой плотности (ОНП) 15, 25, 35, 50, 75,

 низкой плотности (НП) 100, 125, 150, 175,

 средней плотности (СП) 200, 250, 300, 350,

 плотные (ПЛ) 400, 450, 500.

 Марка теплоизоляционного материала обозначает верхний предел его средней плотности. Например, изделия марки 100 могут иметь р0=75—100 кг/м3.

Теплопроводность древесины. Теплотехника деревянных домов

23 ноября 2020

Рубленный дом Киров

В любом здании внутренняя и внешняя поверхности нагреваются различно. В результате от точки большего нагрева к точке меньшего нагрева начинается поток тепла. Передача тепла в разных материалах происходит по-разному. На это влияет такое свойства материалов как теплопроводность.

В рамках строительства домов при рассмотрении вопроса теплопроводности, потери тепла, когда стены имеют ровную поверхность, условно принимают передачу тепла как прямой, а не хаотичный поток. При этом и температура рассматривается не поверхности материала, а температуры внутри помещения и снаружи.

Рассмотрим особенности теплопроводности и потери тепла в деревянных домах.

Древесина как строительный материал

Неоднократно уже указывалось в наших статьях, что строительный материал изначально, впрочем, часто и сейчас, привязывался к регионам строительства. Вполне естественно, что в России основным строительным материалом стала древесина разных пород деревьев с учетом места их произрастания.

В местах отсутствия леса, например, в степных районах, таким строительным материалом становился саман — смесь глины с соломой (именно эта идея лежит в изготовлении современного арболита). В местах выхода скалистых пород строительным материалом мог становиться натуральный камень. В первую очередь известняк, так как он легче поддавался обработке.

Но даже при наличии других строительных материалов предпочтение часто отдавалось древесине. Более того, происходит это и в настоящее время даже при условии наличия развитой транспортной сети и грузоперевозок строительных материалов.

Теплопроводность древесины

Строительство домов из дерева ведется как в отношении маленьких дачных домиков, небольших домов для постоянного проживания или загородного отдыха, так и в отношении больших коттеджей. Одним из важнейших факторов является достаточно низкая теплопроводность древесины. Сравним данные на конкретных примерах.

* Данные из СНиП II-А.7-62 Строительная теплотехника и СНиП II-3-79 Строительная теплотехника

Строительный материалПлотность, кг/м3Теплопроводность, Вт/(м*град)Теплоемкость, Дж/(кг*град)
Бетон на гравии или щебне из камня*24001,51840
Бетон на песке1800..25000,7710
Блок газобетонный400. 8000,15. 0,3
Блок керамический поризованный0,2
Газо- и пенобетон*8000,21840
Известняк (облицовка)*1400 — 20000,49 — 0,93850 — 920
Керамзитобетон на кварцевом песке с поризацией*12000,41840
Керамзитобетон легкий500 — 12000,18 — 0,46
Керамзитобетон на керамзитовом песке*18000,66840
Керамика теплая0,12
Кирпич красный плотный1700 — 21000,67840 — 880
Кирпич красный пористый15000,44
Кирпич облицовочный18000,93880
Кирпич силикатный1000 — 22000,5 — 1,3750 — 840
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе*18000,56880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе*1200 — 16000,35 — 0,47880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе*18000,7880
Ракушечник1000 — 18000,27 — 0,63
Теплопроводность и другие свойства древесины разных пород деревьев
Строительный материалПлотность, кг/м3Теплопроводность, Вт/(м*град)Теплоемкость, Дж/(кг*град)
Берёза510..7700,151250
Дуб вдоль волокон*7000,232300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83)*7000,12300
Кедр500 — 5700,095
Клён620 — 7500,19
Липа, (15% влажности)320 — 6500,15
Лиственница6700,13
Пихта450 — 5500,1 — 0,262700
Сосна и ель вдоль волокон*5000,182300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72)*5000,092300
Сосна смолистая 15% влажности600 — 7500,15 — 0,232700
Тополь350 — 5000,17

Если сравнить показатели в таблицах, то хорошо видно, что теплопроводность древесины ниже теплопроводности многих стеновых материалов. Лишь некоторые современные материалы приближаются, поэтому показатель с деревом (в таблицу не выведены данные по утеплителям, т.к. это не конструктивный материал, который будет рассмотрен в отдельной статье).

Потоки тепла в брусовом и бревенчатом доме

Потоки тепла в брусовом и бревенчатом доме

Изменение требований к теплосопротивлению ограждающих конструкций: слева R

При сравнении разных видов пород необходимо отметить, что на показатель теплопроводности древесины оказывает влияние её плотность и влажность. Плотность одной и тоже породы дерева может зависеть от места произрастания. По этой причине в таблице местами указаны несколько показателей.

Одной из самых «теплых» пород деревьев является кедр. Его коэффициент теплопроводности составляет 0,095 Вт/(м*С). Дом, построенный из кедра, будет очень хорошим вложением, так как позволит экономить на отоплении.

Ель также является хорошим решением для строительства в плане экономии на отоплении. Схожа с елью пихта, но только при условии, что нет повышенной смолистости. Именно смолистость сосны и её плотность отодвигает её на следующую позицию.

Плотность деревьев, особенно хвойных, очень зависит от места их произрастания, а это сказывается на теплопроводности. Показательным примером является именно сосна.

Так в северных районах России, например, Астраханская область, которая славится мачтовыми соснами с малой сбежестью ствола, годовой прирост у сосны не большой, древесина плотная. В Вологодской области часто предпочитают строить из ели, а не из сосны. В то же время в южной тайге сосна имеет резкий прирост летом с древесиной меньшей плотности. В результате теплопроводность такой сосны ниже, но и сбежесть больше.

В строительстве закрепилась практика применения для расчетов усредненного коэффициента теплопроводности для деревянных домов на основе средних данных по сосне, то есть 0,15 Вт/(м* 0 С). В действительности, если рассматривать сухую древесину, то коэффициент теплопроводности составит 0,11 — 0,13 для ели, пихты, сосны и лиственницы и менее 0,1 Вт/(м* 0 С) для кедра. Эти показатели сопоставимы, например, с газосиликатным блоком автоклавного производства.

Толщина стены из дерева

С учетом коэффициента теплопроводности 0,11 — 0,13 1 Вт/(м* 0 С) и сопротивления теплопередаче для средней полосы европейской части России равной 3 м2* 0 С/Вт. Таким образом, толщина стены должна равняться 0,11*3=0,33 метра или 0,13*3=0,39 метра. С учетом этих показателей и применяется усредненный вариант толщины стены для сосны 37 см. Это норма для энерго- и теплосберегающих условий.

Для нас привычно, что стена в доме ровная, плоская. Учитывая тот факт, что тепло передается благодаря хаотичному движению частиц, но в условиях плоской стены можно говорить о прямолинейной передаче тепла от зоны с высокой температурой в зону с низкой. В условиях со стеной из бруса и лафета для энергоэффективного дома потребуется толщина стены 37 см.

Но в условиях с бревном ситуация будет выглядеть иначе. Закругленная поверхность «создаст» разнонаправленные векторы передачи тепла. В результате чего за толщину стены необходимо принимать диаметр бревна, а не его половину по самому узкому месту. Зону межвенцового паза или, как еще называют, теплового моста можно рассматривать как «мостик холода» аналогично раствору в кирпичной кладке.

Потоки тепла в брусовом и бревенчатом доме

Иными словами, в случае строительства дома из бревна, он должен строиться из бревна диаметром 37 см.

Здесь необходимо заметить, что толщина стены это только одно из условий энергоэффективности. Существует еще и понятие допустимых к эксплуатации условий когда, например, рассматривается температура помещений не 24 0 С, а 18 — 20 0 С.

Кроме этого возможна ситуация, когда строительство энергоэффективного дома оказывается нерациональным с учетом стоимости строительство и дальнейшего ремонта, расход на которые может оказаться выше экономии на отоплении. Если же посмотреть СНиП 30-ти летней давности, то выяснится, что достаточной была толщина стены из дерева в 2 — 3 раза тоньше.

Строить дом с большей толщиной стены и меньше тратить на отоплении или построить дом дешевле, но на отоплении тратить больше — это вопрос, на который каждый должен ответить для себя лично. Проектирование дома должно вестись с учетом ответа на этот вопрос.

Теплоемкость материалов — таблица

В строительстве очень важной характеристикой является теплоемкость строительных материалов. От нее зависят теплоизоляционные характеристики стен постройки, а соответственно, и возможность комфортного пребывания внутри здания. Прежде, чем приступить к ознакомлению с теплоизоляционными характеристиками отдельных строительных материалов, необходимо понять, что собой представляет теплоемкость и как она определяется.

Удельная теплоемкость материалов

Теплоемкость – это физическая величина, описывающая способность того или иного материала накапливать в себе температуру от нагретой окружающей среды. Количественно удельная теплоемкость равна количеству энергии, измеряемой в Дж, необходимой для того, чтобы нагреть тело массой 1 кг на 1 градус.
Ниже представлена таблица удельной теплоемкости наиболее распространенных в строительстве материалов.

Таблица удельной теплоемкости

Для того, чтобы рассчитать теплоемкость того или иного материала, необходимо обладать такими данными, как:

  • вид и объем нагреваемого материала (V);
  • показатель удельной теплоемкости этого материала (Суд);
  • удельный вес (mуд);
  • начальную и конечную температуры материала.

Теплоемкость строительных материалов

Теплоемкость материалов, таблица по которой приведена выше, зависит от плотности и коэффициента теплопроводности материала.

Таблица плотности и теплопроводности

А коэффициент теплопроводности, в свою очередь, зависит от крупности и замкнутости пор. Мелкопористый материал, имеющий замкнутую систему пор, обладает большей теплоизоляцией и, соответственно, меньшей теплопроводностью, нежели крупнопористый.

Пористый материал

Это очень легко проследить на примере наиболее распространенных в строительстве материалов. На рисунке, представленном ниже, показано каким образом влияет коэффициент теплопроводности и толщина материала на теплозащитные качества наружных ограждений.

Коэффициент теплопроводности и толщина материала

Из рисунка видно, что строительные материалы с меньшей плотностью обладают меньшим коэффициентом теплопроводности.
Однако так бывает не всегда. Например, существуют волокнистые виды теплоизоляции, для которых действует противоположная закономерность: чем меньше плотность материала, тем выше будет коэффициент теплопроводности.

Волокнистые виды теплоизоляции

Поэтому нельзя доверять исключительно показателю относительной плотности материала, а стоит учитывать и другие его характеристики.

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

Дерево и кирпич

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг.
Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:

  1. Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2. Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3. Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

В деревянном доме в жаркую погоду прохладно

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Теплоемкость и теплопроводность материалов

Теплопроводность – это физическая величина материалов, описывающая способность проникновения температуры с одной поверхности стены на другую.

Теплопроводность материалов

Для создания комфортных условий в помещении необходимо, чтобы стены обладали высоким показателем теплоемкости и низким коэффициентом теплопроводности. В этом случае стены дома будут в состоянии накапливать тепловую энергию окружающей среды, но при этом препятствовать проникновению теплового излучения внутрь помещения.

Тест с ответами: “Теплопроводность”

1. Теплопроводность:
а) явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их контакте +
б) явление изменения внутренней энергии тел
в) распространение внутренней энергии по телу

2. Какие твердые тела обладают хорошей теплопроводностью:
а) деревянные
б) металлические +
в) пластмассовые

3. Какое вещество из названных обладает плохой теплопроводностью:
а) латунь
б) сталь
в) шерсть +

4. Какое вещество из названных обладает плохой теплопроводностью:
а) бумага +
б) цинк
в) сталь

5. Во что лучше всего завернуть кастрюлю, чтобы сохранить ее содержимое горячим:
а) полотенце
б) фольгу
в) пуховое одеяло +

6. В каком состоянии – твердом, жидком, газообразном – вещество обладает наибольшей теплопроводностью:
а) газообразном
б) твердом +
в) жидком

7. При теплопроводности внутренняя энергия переносится в теле от нагретой его части к холодной путем:
а) обмена энергии быстрых молекул на энергию медленных молекул
б) перемещения быстро движущихся молекул из нагретой части в холодную часть
в) такого взаимодействия молекул тела, при котором энергия быстро движущихся молекул передается более медленным +

8. В какой среде не может быть теплопроводности: в пустоте (№ 1), газе (№ 2), жидкости (№ 3), твердом теле (№ 4):
а) № 1 +
б) № 3
в) № 2, № 4

9. Как изменится внутренняя энергия нагретого тела при опускании его в холодную воду:
а) увеличится
б) не изменится
в) уменьшится +

10. Железная и медная детали имеют одинаковую массу и температуру. Их опустили в холодную воду. Какая из них охладится быстрее:
а) железная
б) медная +
в) одновременно

11. Каким образом будет происходить теплообмен, если кипяток из стакана вылить в ведро с холодной водой:
а) кипяток отдаст часть своей энергии холодной воде +
б) холодная вода отдаст часть своей энергии кипятку
в) кипяток получит часть энергии от холодной воды

12. В медный и деревянный сосуды налили жидкость. Какой из сосудов быстрее примет температуру налитой жидкости:
а) одновременно
б) медный +
в) деревянный

13. Чай одинаковой температуры пьют из фарфоровой и металлической кружки. Чай из какой кружки сильнее обожжёт вам губы:
а) из металлической +
б) одинаково
в) из фарфоровой

14. При одинаковой температуре гранита и кирпича гранит на ощупь холоднее кирпича. Какой из материалов обладает лучшей теплопроводностью:
а) кирпич
б) теплопроводность одинакова
в) гранит +

15. Радиаторы центрального отопления обычно устанавливают:
а) внизу +
б) вверху
в) где угодно

16. В промышленных холодильниках воздух охлаждается с помощью труб, по которым течёт охлаждённая жидкость. Где нужно расположить эти трубы:
а) внизу
б) вверху +
в) где угодно

17. В печах с высокими или низкими трубами тяга лучше:
а) без разницы
б) с низкими
в) с высокими +

18. В каком платье летом более жарко: в белом или тёмном:
а) нет разницы
б) в тёмном +
в) в белом

19. На каком способе теплопередачи основано водяное отопление:
а) теплопроводности
б) излучении
в) конвекции +

20. Какие вещества имеют наибольшую теплопроводность:
а) бумага
б) серебро +
в) солома

21. Тепловым движением можно считать:
а) беспорядочное движение всех частиц +
б) движение одной молекулы воды
в) движение нагретого тела

22. Процесс излучения энергии более интенсивно осуществляется у тел:
а) имеющих более низкую температуру
б) имеющих более высокую температуру +
в) имеющих гладкую поверхность

23. Количеством теплоты называют ту часть внутренней энергии, которую:
а) имеет тело
б) тело получает от другого тела при теплопередаче
в) тело получает или теряет при теплопередаче +

24. Как надо понимать, что удельная теплоемкость цинка равна 380 Дж/ кг*°C :
а) цинк массой 1 кг на 380°C требуется 1 Дж
б) цинк массой 1 кг на 1°C требуется 380 Дж
в) цинк массой 380 кг на 1°C требуется 1 Дж

25. Воде, спирту, керосину и растительному маслу сообщили одинаковое количество теплоты. Какая из жидкостей нагреется на большее количество градусов? Массы жидкостей одинаковы:
а) вода
б) керосин
в) растительное масло +

26. При нагревании тел колебания молекул:
а) не изменяется
б) увеличивается +
в) уменьшается

27. В Земле на глубине 100 км температура 1000°C. Какой из металлов цинк, олово или железо находится там в нерасплавленном состоянии:
а) железо +
б) цинк
в) олово

28. Испарение:
а) переход молекул из пара в жидкость
б) переход молекул в пар с поверхности и изнутри жидкости
в) переход молекул из жидкости в пар +

29. Какое из перечисленных веществ можно считать проводником электрического заряда:
а) железо +
б) стекло
в) пластмасса

30. Какое из перечисленных веществ можно считать проводником электрического заряда:
а) пластмасса
б) раствор соли +
в) стекло

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector