Биполярный транзистор в схеме с общей базой: Методические указания к лабораторной работе № 3
Биполярный транзистор в схеме с общей базой: Методические указания к лабораторной работе № 3
Целью работы является изучение принципа действия, основных параметров и статических вольтамперных характеристик (ВАХ) биполярного транзистора в схеме с общей базой (ОБ). В работе снимаются входные, выходные и передаточные ВАХ германиевых и кремниевых транзисторов. По характеристикам определяется основные параметры.
1. Характеристики и параметры биполярных транзисторов
Биполярный транзистор представляет собой трёхэлектродный полупроводниковый прибор на основе p-n-p или n-p-n структуры, предназначенный для усиления и генерации электрических сигналов. Процессы в p-n-p и n-p-n структурах протекают аналогично. Например, в р-п-р структуре n-область, разделяющая p-области, называется базой, одна из p-областей – эмиттером, а другая – коллектором (рис. 3.1).
В основном рабочем режиме – активном, эмиттерный переход смещен в прямом направлении, коллекторный – обратном. Полярности внешних напряжений в схеме с ОБ для p-n-p или n-p-n транзисторов показаны на рис. 3.2. Эмиттер легирован значительно сильнее, чем база, поэтому при включении его в прямом направлении ток эмиттера в p-n-p- транзисторе представляет собой ток инжекции дырок в базу. Инжектированные дырки диффундируют к коллектору. Так как ширина базы много меньше диффузионной длины дырок , то большая часть дырок доходит до обратно смещенного коллектора, захватывается его полем и переносится в коллектор, образуя коллекторный ток.
Рис. 3.1. Структура биполярного p-n-p транзистора
Рис. 3.2. Полярности на p-n-p (а) и n-p-n (б) транзисторах для нормального включения
Поскольку коллектор включен в обратном направлении, то его ток определяется только дырками, дошедшими из эмиттера, и почти не зависят от напряжения на коллекторе. Коллектор обладает большим выходным сопротивлением и по отношению к внешней цепи является генератором тока . Высокое выходное сопротивление коллекторного перехода позволяет включить в его цепь достаточно большое сопротивление нагрузки, на котором выделяется мощность, значительно больше мощности, затраченной во входной цепи. Энергия источника питания с помощью транзистора преобразуется в энергию электрического сигнала.
2.1. Коэффициент передачи тока
При = 0 через коллекторный переход идет некоторый начальный обратный ток , обусловленный тепловой генерацией электронно-дырочных пар.
Коэффициент передачи тока показывает отношение коллекторного тока (без ) к эмиттерному.
, так как обычно (3.1)
Величина зависит от параметров базы и эмиттера, она обычно близка к единице и составляет около 0,95…..0,98.
Закон Кирхгофа для токов в транзисторе выражается соотношением
, что позволяет, используя (3.1), представить ток базы и в виде:
Основную долю базового тока составляет ток рекомбинации, пропорциональный общему избыточному заряду дырок в базе
где – время жизни дырок в базе.
На рис. 3.3 показано распределение дырок в базе для двух напряжений на коллекторном переходе. Распределение дырок в базе подчиняется уравнению непрерывности и граничным условиям Шокли у эмиттерного перехода
где — равновесная концентрация дырок в n-базе;
– концентрация доноров в базе.
На коллекторном переходе
Так как в нормальном режиме и , то , а . Ток дырок в базе имеет диффузионный характер, поэтому
где – площадь эмиттерного перехода.
Так как рекомбинация в тонкой базе незначительна, то
Распределение дырок в базе имеет почти линейный вид (рис.3.3)
а заряд дырок , проходящих сквозь базу, пропорционален заштрихованной на рис. 3.3 площади
Рис. 3.3. Распределение дырок в базе p-n-p транзистора
в активном нормальном режиме
Коэффициент передачи тока с учетом (4.3) и (4.4) принимает вид
Это выражение правильно передаёт зависимость коэффициента передачи от толщины базы и времени жизни дырок в ней, но не учитывает вкладов электронных токов эмиттерного и коллекторного переходов.
2.2. Вольтамперные характеристики транзистора
При включении транзистора по схеме с ОБ входным током будет ток эмиттера , выходным — ток коллектора , входным напряжением — напряжение на эмиттерном переходе , выходным — напряжение на коллекторном переходе (рис. 3.2).
Входные ВАХ показаны на рис. 3.4.а. Они почти повторяют ВАХ прямосмещенного эмиттерного перехода
где — обратный ток эмиттерного перехода.
Выходные характеристики показаны на рис. 3.4б.
Рис. 3.4. Вольтамперные характеристики транзистора в схеме с ОБ:
а) – входные; б) — выходные
При выходная ВАХ представляет собой перевернутую характеристику коллекторного перехода с током насыщения . При к нему прибавляется ток . Полный ток коллектора составляет
Биполярные транзисторы. Биполярные транзисторы
Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзисторов. В полупроводниковой структуре сформированы два p-n-перехода, перенос заряда через которые осуществляется носителями двух полярностей — электронами и дырками. Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора.
Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).
Биполярный транзистор состоит из трёх полупроводниковых слоёв с чередующимся типом примесной проводимости: эмиттера (обозначается «Э», англ. E), базы («Б», англ. B) и коллектора («К», англ. C). В зависимости от порядка чередования слоёв различают n-p-n (эмиттер — n-полупроводник, база — p-полупроводник, коллектор — n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты.
С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы, но при изготовлении они существенно различаются степенью легирования для улучшения электрических параметров прибора. Коллекторный слой легируется слабо, что повышает допустимое коллекторное напряжение. Эмиттерный слой — сильно легированный: величина пробойного обратного напряжения эмиттерного перехода не критична, так как обычно в электронных схемах транзисторы работают с прямосмещённым эмиттерным переходом. Кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Слой базы легируется слабо, так как располагается между эмиттерным и коллекторным слоями и должен иметь большое электрическое сопротивление.
Общая площадь перехода база-эмиттер выполняется значительно меньше площади перехода коллектор-база, что увеличивает вероятность захвата неосновных носителей из базового слоя и улучшает коэффициент передачи. Так как в рабочем режиме переход коллектор-база обычно включён с обратным смещением, в нём выделяется основная доля тепла, рассеиваемого прибором, и повышение его площади способствует лучшему охлаждению кристалла. Поэтому на практике биполярный транзистор общего применения является несимметричным устройством (то есть инверсное включение, когда меняют местами эмиттер и коллектор, нецелесообразно).
Для повышения частотных параметров (быстродействия) толщину базового слоя делают меньше, так как этим, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей. Но при снижении толщины базы снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. Полупроводниковые приборы на его основе имеют ряд недостатков, и в настоящее время биполярные транзисторы изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Принцип работы
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В транзисторе типа n-p-n основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико. Сильное электрическое поле обратносмещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно бо́льшим током коллектора.
Режимы работы
Нормальный активный режим
Переход эмиттер-база включён в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт):
UЭБ 0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ>0; UКБ Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ 0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включённый последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения.
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх = Uвх/Iвх.
- Среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Не инвертирует фазу сигнала.
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α Достоинства
- Хорошие температурные и широкий частотный диапазон, так как в этой схеме подавлен эффект Миллера.
- Высокое допустимое коллекторное напряжение.
- Малое усиление по току, равное α, так как α всегда немного менее 1
- Малое входное сопротивление
- Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.
- Большой коэффициент усиления по току.
- Большой коэффициент усиления по напряжению.
- Наибольшее усиление мощности.
- Можно обойтись одним источником питания.
- Выходное переменное напряжение инвертируется относительно входного.
- Имеет меньшую температурную стабильность. Частотные свойства такого включения по сравнению со схемой с общей базой существенно хуже, что обусловлено эффектом Миллера.
- Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β+1 [β>>1].
- Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.
- Большое входное сопротивление.
- Малое выходное сопротивление.
- Коэффициент усиления по напряжению немного меньше 1.
- Коэффициент передачи по току.
- Входное сопротивление.
- Выходная проводимость.
- Обратный ток коллектор-эмиттер.
- Время включения.
- Предельная частота коэффициента передачи тока базы.
- Обратный ток коллектора.
- Максимально допустимый ток.
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером.
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Эквивалентная схема биполярного транзистора с использованием h-параметров.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
С повышением частоты заметное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Его реактивное сопротивление уменьшается, шунтируя нагрузку и, следовательно, уменьшая коэффициенты усиления α и β. Сопротивление эмиттерного перехода Cэ также снижается, однако он шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.
В импульсном режиме ток коллектора изменяется с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.
Биполярный транзистор
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.
Содержание
Устройство и принцип действия
Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность экстракции неосновных носителей заряда в коллектор и т.к. в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора ), поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).
В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора [1] . Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.
Режимы работы биполярного транзистора
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)
UЭБ>0;UКБ<0 (для транзистора p-n-p типа, для транзистора n-p-n типа условие будет иметь вид UЭБ<0;UКБ>0);Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
Режим отсечки
В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Схемы включения
Любая схема включения транзистора характеризуется двумя основными показателями:
- Коэффициент усиления по току Iвых/Iвх.
- Входное сопротивление Rвх=Uвх/Iвх
Схема включения с общей базой
Усилитель с общей базой.
- Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
- Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]
- Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.
Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.
- Хорошие температурные и частотные свойства.
- Высокое допустимое напряжение
Недостатки схемы с общей базой :
- Малое усиление по току, так как α < 1
- Малое входное сопротивление
- Два разных источника напряжения для питания.
Схема включения с общим эмиттером
- Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]
- Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб
- Большой коэффициент усиления по току
- Большой коэффициент усиления по напряжению
- Наибольшее усиление мощности
- Можно обойтись одним источником питания
- Выходное переменное напряжение инвертируется относительно входного.
- Худшие температурные и частотные свойства по сравнению со схемой с общей базой
Схема с общим коллектором
- Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]
- Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб
- Большое входное сопротивление
- Малое выходное сопротивление
- Коэффициент усиления по напряжению меньше 1.
Схему с таким включением называют «эмиттерным повторителем»
Основные параметры
- Коэффициент передачи по току
- Входное сопротивление
- Выходная проводимость
- Обратный ток коллектор-эмиттер
- Время включения
- Предельная частота коэффициента передачи тока базы
- Обратный ток коллектора
- Максимально допустимый ток в схеме с общим эмиттером
Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, не зависимо от схемы его включения. В качестве основных собственных параметров принимают:
- коэффициент усиления по току α;
- сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
- rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
- rк — сумму сопротивлений коллекторной области и коллекторного перехода;
- rб — поперечное сопротивление базы.
Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».
Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.
Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.
Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.
Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.
Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:
В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.
Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ: