Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Асинхронный двигатель

Асинхронный двигатель

Устройство и принцип действия асинхронных двигателей. Временная диаграмма фазных токов обмотки статора. Силовые линии магнитного поля асинхронного двигателя в разные моменты времени. Взаимодействие вращающегося магнитного поля с обмоткой ротора.

РубрикаФизика и энергетика
Видреферат
Языкрусский
Дата добавления23.12.2015
Размер файла808,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Омский государственный аграрный университет имени П.А. Столыпина»

Кафедра технического сервиса, механики и электротехники факультета технического сервиса в АПК

на тему: Асинхронный двигатель

Выполнили: ст. 41 гр., Голышев К., Гаврюшин К.

Проверил: ст. преп., доцент, кандидат технических наук, Троценко В.В.

1. Асинхронный двигатель. Общие сведения

2. Устройство асинхронного двигателя

3. Принцип действия

1. Асинхронный двигатель. Общие сведения

Асинхронные машины относятся к классу электромеханических преобразователей, т.е. преобразователей электрической энергии в механическую или механической в электрическую. В первом случае они называются двигателями, а во втором — генераторами. Все электрические машины обладают свойством обратимости и могут осуществлять преобразование энергии в обоих направлениях, поэтому при изучении процессов в машинах пользуются понятиями двигательного и генераторного режимов. Однако при разработке и изготовлении машины оптимизируются для условий работы в одном из режимов и используются в соответствии с назначением. Асинхронные машины не являются исключением из этого правила, но асинхронные генераторы значительно уступают синхронным по многим параметрам и редко используются на практике, в то время как асинхронные двигатели являются самыми распространёнными электромеханическими преобразователями. Суммарная мощность асинхронных двигателей составляет более 90% общей мощности всех существующих двигателей, поэтому в данном курсе мы ограничимся рассмотрением только этого типа машин. Асинхронные двигатели относятся к бесколлекторным машинам переменного тока или машинам с вращающимся магнитным полем. Название асинхронные (несинхронные) объясняется тем, что в статическом режиме работы скорость вращения ротора (вращающейся части) двигателя отличается от скорости вращения магнитного поля, т.е. ротор и поле вращаются несинхронно.

2. Устройство асинхронного двигателя

Устройство асинхронного двигателя показано на рис.

Основные его части статор и ротор. Статор — это неподвижная часть мотора (1), в котором закреплены между собой все части электродвигателя и с помощью которого двигатель крепится на основании.

Подшипники качения (2) размещаются в подшипниковых щитах (3), которые обеспечивают соосность между статором и ротором. В корпусе (1) размещён магнитный сердечник (7), собранный из статорных пластин толщиной 0,3 — 0,5 мм. Эти пластины изолированы друг от друга. В желобах статора расположена трёхфазная обмотка (8), с помощью которой получаем вращающееся магнитное поле. Ротор (9), закреплённый на валу (10), вращается на подшипниках. На свободном конце вала находится вентилятор (4), который при вращении мотора подаёт воздух для охлаждения. Вентилятор закрыт крышкой для защиты от касания. Для электрического подсоединения мотора на корпусе находится клеммная коробка (6).

3. Принцип действия

Рассмотрение принципа действия асинхронного двигателя можно разделить на два этапа: первый этап — создание обмоткой статора вращающегося магнитного поля, второй этап — взаимодействие вращающегося магнитного по- ля с обмоткой ротора. Магнитное поле асинхронного двигателя Симметричная трехфазная обмотка статора подключена к трехфазному источнику. При этом фазные токи симметричны, т.е. одинаковы по величине и отличаются по фазе на 1/3 часть периода. Временная диаграмма фазных токов показана на рис. 1. Обмотка статора с симметричным трехфазным током создает магнитное поле, распределенное в магнитной цепи асинхронного двигателя. Для анализа характера магнитного поля рассмотрим распределение его силовых линий в разные моменты времени, обозначенные на рис. t1, t2, t3, t4 через равные промежутки ?t=T/3.

асинхронный двигатель статор ротор

Рис. 1- Временная диаграмма фазных токов обмотки статора

Распределение силовых линий магнитного поля определяется направлением токов в проводниках обмотки статора, расположенных в его пазах. Каждая фаза трехфазной обмотки представлена одним витком, стороны которого находятся в диаметрально расположенных пазах. Три фазы смещены относительно друг друга по окружности на 120°. Проводники, соответствующие началам фаз, обозначены символами А, В, С, концы фаз — X, Y, Z. На рис.2 показаны силовые линии магнитного поля для трех моментов времени.

Рис. 2- Силовые линии магнитного поля асинхронного двигателя в разные моменты времени

Направления токов в проводниках определяются их значениями в соответствии с временной диаграммой на рис. 1. В частности, в момент времени t1 ток фазы А положителен (iA>0). На рис. 2 положительному значению тока соответствует направление за плоскость рисунка, которое обозначено в начале фазы А знаком «+». В конце этой фазы X ток отрицателен, т.е. имеет обратное направление, которое обозначено знаком «*». Аналогично обозначены токи двух других фаз, которые в соответствии с временной диаграммой в этот момент времени имеют отрицательные значения (iB0, iC0. Как видно на рис. 2, при питании обмотки статора трехфазным током создается двухполюсное магнитное поле. С изменением фазных токов это магнитное поле поворачивается в пространстве. При этом через равные промежутки времени (?t=T/3) магнитное поле поворачивается в пространстве на равный угол (1/3 часть окружности). В момент времени t4 распределение токов в обмотке и магнитное поле повторяет момент t1, Таким образом, симметричная трехфазная обмотка статора асинхронного двигателя, потребляющая от трехфазного источника симметричные фазные токи, создает равномерно вращающееся в пространстве магнитное поле.

Взаимодействие вращающегося магнитного поля с обмоткой ротора Электромагнитный вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля с обмоткой ротора. Рис. 2 иллюстрирует процессы, происходящие при этом взаимодействии.

Рис. 3. Взаимодействие вращающегося магнитного поля с обмоткой ротора

Здесь показаны стержни короткозамкнутой обмотки ротора. Вращающееся магнитное поле, связанное с ротором, представлено его силовыми линиями с индукцией В, направленными сверху вниз. Направление вращения магнитного поля — по часовой стрелке с частотой вращения n0. При вращении магнитного поля его силовые линии пересекают проводники обмотки ротора. При этом проявляется индукционное действие магнитного поля. Согласно закона электромагнитной индукции в проводнике, движущемся в магнитном поле (относительно магнитного поля), индуцируется ЭДС e Величина этой ЭДС определяется интенсивностью магнитного поля (индукцией В) и скоростью движения проводника относительно магнитного поля v: e2 = Bvl 2 , (где l — длина проводников обмотки ротора). Направление ЭДС e2 в проводнике определяется по правилу правой руки. При этом необходимо иметь в виду, что вектор скорости определяется направлением движения проводника относительно магнитного поля. Например, на рис. 2 магнитное поле вращается по часовой стрелке. При этом относительно верхних проводников силовые линии движутся вправо. Это эквивалентно направлению движения проводника относительно магнитного поля влево, т.е. вектор скорости относительного движения проводника следует направить влево. С учетом этого направление ЭДС индукции в верхних проводниках обмотки ротора — из-за плоскости рисунка, а в нижних проводниках — за плоскость рисунка. Эти направления обозначены условными знаками «+» и «*». В короткозамкнутой обмотке ротора все стержни включены в замкнутую электрическую цепь посредством короткозамыкающих колец. В каждом стержне под действием ЭДС е2 возникает ток ротора (вторичный ток) i2 того же направления, что и ЭДС. Величина этого тока определяется величиной ЭДС е2 и полным сопротивлением обмотки ротора Z2.i2= e2/Z2. При возникновении тока в обмотке ротора проявляется силовое действие магнитного поля, т.е. на проводники с током, находящиеся в магнитном поле, действует электромагнитная сила Fэм. Величина этой силы определяется интенсивностью магнитного поля (индукцией В) и величиной тока i2: Fэм= Bi(2)/ l. Направление действия электромагнитной силы определяется в соответствии с правилом левой руки. При направлениях силовых линий и токов в обмотке ротора, показанных на рис. 3, направление электромагнитной силы, действующей на верхние проводники, — вправо, а на нижние — влево. Силы, действующие на все проводники обмотки ротора, складываясь, создают электромагнитный вращающий момент Мэм , направленный по часовой стрелке.

Читайте так же:
Банки для аккумулятора шуруповерта aliexpress

где D2 — диаметр ротора; N2 — число проводников обмотки ротора.

Под действием этого вращающего момента ротор вращается с частотой вращения n в том же направлении, что и магнитное поле. При этом двигатель, вращая приводной механизм, совершает механическую работу. Для осуществления реверса (изменения направления вращения) необходимо поменять на- правление вращения магнитного поля. Для этого достаточно переключить об- мотку статора так, чтобы изменить последовательность чередования фаз на противоположную.

Таким образом, асинхронный двигатель, обмотка статора которого подключена к трехфазному источнику электроэнергии, создает электромагнитный вращающий момент и совершает механическую работу. Т.е. асинхронный двигатель преобразует электрическую энергию в механическую.

Необходимым условием создания электромагнитного момента является неравенство частоты вращения ротора n и магнитного поля n0. Если ротор вращается с такой же частотой вращения, как и магнитное поле (n=n0), то проводники обмотки ротора относительно магнитного поля неподвижны, т.е. скорость относительного движения v=0. Тогда ЭДС е2 в обмотке ротора равна нулю, и тока в обмотке нет (i2=0), электро- магнитная сила не создается (Fэм=0) и электромагнитный вращающий момент равен нулю. Т.е. механическая энергия не создается. Такой режим работы асинхронного двигателя называется холостой ход. Частота вращения ротора, равная частоте вращения магнитного поля, называется синхронной.

Достоинства асинхронного двигателя:

1. Простота изготовления.

2. Относительная дешевизна.

3. Высокая надёжность в эксплуатации.

4. Невысокие эксплуатационные затраты.

5. Возможность включения в сеть без каких-либо преобразователей (для нагрузок, не нуждающихся в регулировке скорости).

Все вышеперечисленные достоинства являются следствием отсутствия механических коммутаторов в цепи ротора и привели к тому, что большинство электродвигателей, используемых в промышленности — это асинхронные машины, в исполнении АДКЗ.

Недостатки асинхронного двигателя:

1. Небольшой пусковой момент.

2. Значительный пусковой ток.

3. Низкий коэффициент мощности.

4. Сложность регулирования скорости с необходимой точностью.

Причиной широкого распространения асинхронных двигателей является их предельная простота, надёжность и экономичность. Можно сказать, что асинхронные двигатели совместно с синхронными генераторами и трёхфазными линиями передачи и распределения электрической энергии образуют систему передачи механической энергии на расстояние. В последнее время в связи с появлением полупроводниковых преобразователей частоты для питания асинхронных двигателей область их применения существенно расширилась. Они стали широко применяться в высокоточных приборных приводах там, где ранее использовались в основном двигатели постоянного тока.

1. Учебное пособие: Электротехника Асинхронный двигатель, Проскуряков В.С., Соболев С.В.

2. Учебное пособие: Общая электротехника, Усольцев А.А.

Размещено на Allbest.ru

Подобные документы

Образование вращающегося магнитного поля. Подключение обмотки статора к цепи переменного трехфазного тока. Принцип действия асинхронного двигателя. Приведение параметров вторичной обмотки к первичной. Индукция магнитного поля. Частота вращения ротора.

презентация [455,0 K], добавлен 21.10.2013

Определение трехфазного асинхронного двигателя и обмоточных данных, на которые выполнены схемы обмоток. Перерасчет обмоток на другие данные (фазное напряжение и частоту вращения магнитного поля статора). Установление номинальных данных электродвигателя.

курсовая работа [1006,7 K], добавлен 18.11.2014

Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.

реферат [206,2 K], добавлен 27.07.2013

Получение вращающего магнитного поля, работа статора. Пуск в ход однофазного асинхронного двигателя, его механическая характеристика и применение. Способ подключения трёхфазного двигателя в однофазную сеть, подбор и определение ёмкости конденсатора.

реферат [35,7 K], добавлен 20.05.2011

Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

Преимущества и недостатки асинхронного двигателя

Подавляющее большинство электродвигателей, используемых в промышленности – асинхронные двигатели с короткозамкнутым ротором. В новом оборудовании их доля составляет более 95%, остальное – серводвигатели, шаговые двигатели, щеточные двигатели постоянного тока и некоторые другие специфические виды приводов.

Читайте так же:
Диод шоттки обозначение на схеме

Преимущества асинхронного двигателя

Конструкция. По сравнению с другими типами электродвигателей асинхронный двигатель имеет наиболее простую конструкцию. С одной стороны это объясняется использованием стандартной трехфазной системы электроснабжения, с другой – принципом действия агрегата. Данная особенность обуславливает еще одно важное преимущество — невысокую цену асинхронных приводов. Среди двигателей разных типов одинаковой мощности асинхронный будет самым дешевым.

Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не нужны дополнительные элементы и преобразования. Вращение поля внутри статора и, как следствие, вращение ротора обусловлены самой конструкцией асинхронного двигателя. Достаточно обеспечить подачу напряжения через коммутационный аппарат (контактор или пускатель), и двигатель будет работать.

Эксплуатация. Затраты на эксплуатацию асинхронного электродвигателя крайне малы, а обслуживание не представляет никаких сложностей. Нужно лишь время от время проводить чистку от пыли и по необходимости протягивать контакты подключения. При правильной установке и эксплуатации двигателя замена подшипников производится раз в 15-20 лет.

Недостатки асинхронных двигателей

Скорость вращения ротора. Скорость вращения вала двигателя зависит от частоты питающей сети (стандартные значения в промышленности – 50 и 60 Гц) и от количества полюсов обмоток статора.

Это можно считать недостатком в том случае, когда необходимо в процессе работы менять скорость вращения. Для решения данной проблемы были разработаны многоскоростные асинхронные двигатели, у которых имеется возможность переключения обмоток.

Кроме того, в современном оборудовании управление скоростью реализуется за счет преобразователей частоты.

Скольжение. Эффект скольжения проявляется в том, что частота вращения ротора всегда будет меньше частоты вращения поля внутри статора. Это заложено в принцип работы асинхронного двигателя и отражено в его названии. Скольжение также зависит от механической нагрузки на валу.

При необходимости скольжение можно скомпенсировать, а скорость вращения сделать независимой от нагрузки при помощи преобразователя частоты.

Величина напряжения питания. В сырых и влажных помещениях, где действуют повышенные требования к электробезопасности, применение асинхронного электродвигателя может быть невозможным. Дело в том, что из-за конструктивных особенностей такие двигатели практически не производятся на напряжение питания менее 220 В. В таких случаях применяют приводы постоянного тока, рассчитанные на напряжение 48 В и менее, либо используют гидравлические или пневматические приводы.

Чувствительность к напряжению питания. При отклонении напряжения питания более чем на 5% параметры двигателя могут отличаться от номинальных, а сам агрегат может перегреваться. Кроме того, при понижении напряжения падает момент электродвигателя, который квадратически зависит от напряжения.

При использовании преобразователя частоты скорость вращения меняется путем изменения величины и частоты питающего напряжения. Принципиально, что отношение напряжения к частоте должно быть константой.

Пусковой ток. Большой пусковой ток – проблема асинхронных двигателей мощностью более 10 кВт. При пуске ток может превышать номинальный в 5-8 раз и длиться несколько секунд. Из-за этого негативного эффекта мощные двигатели нежелательно подключать напрямую.

Чаще всего для понижения пускового тока применяют схему «Звезда-Треугольник», устройства плавного пуска и преобразователи частоты. Также можно использовать асинхронные двигатели с фазным ротором.

Пусковой момент. В силу электрических и механических переходных процессов в момент пуска двигатель обладает крайне низким КПД и большой реактивностью. Из-за низкого пускового момента привод может не справиться с началом вращения тяжелых механизмов. Этот же недостаток приводит к нагреву двигателя при пуске. Отсюда возникает другая проблема – ограничение количества пусков в единицу времени.

При использовании частотного преобразователя момент при пуске и на низких частотах может быть увеличен за счет повышения напряжения.

Вывод

Плюсы асинхронных двигателей значительно перевешивают минусы. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска.

Устройство и принцип работы асинхронных двигателей с фазным ротором

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

асинхронный двигатель

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.
Читайте так же:
Как восстановить литиевый аккумулятор шуруповерта

схема пуска асинхронного двигателя

Технические характеристики

асинхронный двигатель

Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Устройство

устройство асинхронного двигателя

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

принцип работы асинхронного двигателя

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Преимущества и недостатки

асинхронные двигатели

Востребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.
Читайте так же:
Чем можно приклеить пластик к металлу

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

Принцип работы асинхронного двигателя с короткозамкнутым ротором

Пожалуй, нет ни одного серьезного механизма или машины, где не применялись бы электрические двигатели. В автомобиле, с стиральной машине, сельхозтехнике и мелких бытовых приборах — везде используется электрический двигатель. Наибольшее распространение получил асинхронный электрический двигатель и о нем сегодня мы поговорим.

Содержание:

Синхронные и асинхронные двигатели в машиностроении и в быту

Электрический двигатель

Благодаря своей простоте и экономичности, асинхронный электромотор может пригодиться не только в машиностроении и в быту, но мы рассмотрим именно такие двигатели, которые встречаются чаще всего. Причиной популярности асинхронного двигателя переменного тока стали его доступность, возможность подключения к любой розетке электропитания без всяких выпрямителей и согласовательных устройств, а также простотой обслуживания и ремонта в случае чего.

Существуют два вида асинхронных электромоторов — с короткозамкнутым ротором и с фазным ротором. Но для начала стоит разобраться в конструкции и узнать принцип работы асинхронного двигателя с короткозамкнутым ротором, после чего станет понятна причина его популярности. Несмотря на то, что асинхронный мотор был разработан еще в конце 19 века, до сих пор его конструкция особенных изменений не претерпела.

Преимущества АС двигателя

Составные части электродвигателя

Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

Схема устройства асинхронного мотора

Внутри статора, внутри его магнитного поля, поместили ротор, который представляет собой вал с сердечником и обмоткой. На рисунке ниже изображена схема устройства асинхронного мотора.
По схеме понятно, что статор состоит из наборных пластин и нескольких обмоток, которые намотаны на пластинчатый сердечник. Эти обмотки могут подсоединяться по разным схемам, в зависимости от типа напряжения. Каждая их обмоток сдвинута друг отнoсительно друга на 120 градусов. А ротор такого двигателя может быть принципиально двух типов.

Двигатель с фазным ротором

Ротор фазного типа

Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

Двигатель с фазным ротором

Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

Короткозамкнутый ротор и его особенности

Короткoзамкнутый ротор

Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

Детали ротора

Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

Как работает магнитное поле

Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

Работа магнитного поля

За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

Мощный двигатель

Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

Принцип работы АД (асинхронного двигателя) с фазным ротором

Ад с фазным ротором

Асинхронный двигатель (АД) с фазным ротором представляет собой многофункциональную силовую установку, которая поддерживает регулировку с помощью внесения в роторную цепь добавочных сопротивлений. От классических моделей с короткозамкнутым ротором агрегат отличается более высоким пусковым моментом и низким пусковым током. Классификация устройств осуществляется с учетом их свойств и конструкции.

Общая информация

Чтобы понять, как работает асинхронный двигатель с фазным ротором, необходимо внимательно изучить особенности его пуска. При запуске установки ее ротор параллельно переходит из состояния покоя в медленное и равномерное вращение. При этом система уравновешивает момент сил сопротивления посредством собственного вала.

Ад с фазным ротором схема управления

Во время запуска начинается усиленное потребление энергетических ресурсов, что связано с преодолением тормозного момента и компенсацией потерь внутри силовой установки. Нередко параметры начального пускового момента далеки от требуемых, поэтому асинхронный двигатель не способен перейти в режим полноценной работы. В таком случае ускорение приостанавливается, а постоянное воздействие чрезмерного тока приводит к перегреву внутренних узлов установки.

Читайте так же:
Ацетилен физические свойства и применение

По этой причине частота запусков двигателя ограничивается несколькими включениями. Если агрегат работал от электрической сети с низкой мощностью, тогда подобное явление может снизить общее напряжение и нарушить работу других приборов, присоединенных к этой линии.

Наличие в роторной цепи пусковых резисторов снижает показатели электрического тока, но при этом поднимает начальный пусковой момент, пока он не достигнет пиковой отметки. Запуск силовой установки бывает легким, нормальным или тяжелым.

В зависимости от этого фактора можно определить оптимальные параметры сопротивления резисторов.

Ад с фазным ротором плюсы

После успешного запуска остается поддерживать стабильный вращающий момент на этапе разгона ротора, что сократит продолжительность перехода из спокойного состояния в стадию вращения и снизит вероятность нагрева. Для этого необходимо уменьшить показатели сопротивления резисторов.

Переключение разных резисторов происходит из-за подключения контакторов ускорения в последовательном порядке. Отключать двигатель от электрической сети можно только при накоротко замкнутой роторной цепи. Если это требование проигнорировать, то появится риск существенного перенапряжения в обмоточных фазах статора.

Технические характеристики

Существуют установленные требования, гарантирующие качественную работу асинхронных двигателей с фазным ротором. От них зависят базовые параметры и характеристики системы, включая:

Ад с фазным ротором технические характеристики

  1. Размеры и мощность установки, соответствующие техническому регламенту.
  2. Защиту от внешних воздействий. Ее степень определяется окружающими условиями, в которых будет расположена машина. Дело в том, что одни установки предназначаются для работы внутри помещения, в то время как другие способны функционировать и на улице. К тому же доступные на рынке агрегаты отличаются климатическими особенностями. Например, существуют двигатели, которые выдерживают экстремальный холод или, наоборот, сильную жару. В зависимости от условий использования они обладают характерным исполнением и защитой.
  3. Степень изоляции. Асинхронные двигатели с фазным ротором должны быть устойчивыми к высоким температурным показателям и возможным нагревам внутренних механизмов. Для предотвращения воспламенений их защищают специальными изоляционными слоями.
  4. Соответствие установленным стандартам и режимам функционирования.
  5. Наличие мощной охладительной системы, которая соответствует рабочему режиму двигателя.
  6. Уровень шума во время запуска на холостом ходу. Он соответствует второму классу или ниже.

Устройство и конструкция

Желая купить асинхронный электродвигатель с фазным ротором, необходимо хорошо разбираться в его устройстве и конструкционных особенностях. В первую очередь нужно знать, что к основным частям установки относятся статор, который является неподвижным, и ротор — вращающийся механизм внутри статора. Между обоими элементами расположен воздушный зазор, а их поверхность покрыта специальной обмоткой.

Ад с фазным ротором устройство

Обмотка статора подключена к электрической сети с переменным напряжением, которое передается на обмотку ротора. Взаимодействие узлов обусловлено магнитным потоком.

Что касается корпуса статора, то в качестве него используется корпус двигателя, внутри которого расположен запрессованный сердечник. В последнем находятся проводники обмотки, защищенные от замыкания изоляцией. Обмотка сердечника состоит из нескольких секций, заключенных в катушки.

В роторе установлены вал и сердечник из набранных пластин. Последний элемент создается на основе высокотехнологичной стали и обладает симметричными пазами с проводниками. При работе вал ротора передает крутящий момент к приводу установки. В зависимости от типа ротора выделяют две разновидности двигателей:

  1. С короткозамкнутым ротором.
  2. С фазным ротором.

Ад с фазным ротором конструкция

В первом типе роторов присутствуют алюминиевые стержни, которые находятся внутри сердечника и замкнуты на торцах кольцами. Их также называют «беличьим колесом». Обычно пазы установки обрабатываются алюминием, что повышает их прочность.

Фазный ротор асинхронного двигателя существенно отличается от предыдущей разновидности. Число катушек, установленных под конкретным углом, в таких моделях определяется количеством парных полюсов. При этом пары полюсов в роторе такого типа всегда сопоставимы с аналогичными статорными парами.

Принцип работы

Изучив устройство АД с фазным ротором и его запуск, можно приступать к более подробному рассмотрению работы такой установки. Её можно разделить на несколько пунктов:

  1. На статор с тройной обмоткой подается трехфазное напряжение от электрической сети с переменным током.
  2. Затем начинается образование магнитного поля, которое приводит к вращению ротора. По мере ускорения вращательных движений скорость оборотов ротора существенно растет.
  3. По достижении определенных показателей отдельные линии полей обоих узлов пересекаются, что вызывает появление электродвижущей силы. Она воздействует на роторную обмотку, за счет чего в ней формируется электрический ток.
  4. В определенный момент времени между магнитным полем статора и током в роторе начинается взаимодействие, образующее крутящий момент. Именно за счет него и осуществляется работа асинхронного двигателя.

Запуск ад с фазным ротором

Плюсы и минусы

В последнее время асинхронные агрегаты пользуются большой популярностью. Она связана с массой преимуществ, которыми они обладают. В их числе:

Ад с фазным ротором приемущества

  1. Высокие значения при начальном вращающем моменте.
  2. Способность принимать любые механические перегрузки без существенного изменения КПД или нарушения стабильной работы установки. Даже если в системе возникают разнообразные перегрузки, агрегат продолжает функционировать с заданной скоростью и практически не отклоняется от базового режима.
  3. Сниженный пусковой ток. В отличие от других асинхронных моделей, например, с короткозамкнутым ротором, у этих двигателей сравнительно низкие показатели пускового тока.
  4. Возможность полной автоматизации работы.
  5. Простота конструкции.
  6. Простая схема запуска.
  7. Сравнительно невысокая цена.
  8. Отсутствие необходимости сложного и дорогостоящего обслуживания.

Кроме множества плюсов у двигателей этого типа имеются и недостатки. К ключевым минусам относят довольно крупные габариты, из-за которых монтаж и дальнейшая эксплуатация системы усложняются, а также сниженный КПД по сравнению со многими аналогами.

По последнему показателю устройства с короткозамкнутым ротором более продуктивные.

Сферы применения

В настоящее время многие промышленные двигатели являются асинхронными. Их популярность обусловлена вышеперечисленными плюсами и доступностью. Сферы применения таких агрегатов очень обширные, поэтому их активно используют для работы автоматизированных устройств из телемеханической сферы, бытового и медицинского оборудования и звукозаписывающих установок. Асинхронный двигатель — это полезное изобретение нынешнего времени, которое упрощает жизнь человека и обеспечивает хороший КПД при минимальных затратах электроэнергии.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector