Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сверлильные оправки, втулки, дорны

Сверлильные оправки, втулки, дорны

Оправка переходная на сверлильный патрон с КМ2 на B16 (с лапкой) GRIFF b161016

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Втулка переходная с КМ3 на КМ2 (с лапкой) GRIFF b111104

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 600 р.
Цена за ед. товара: 400 р. 461 р.

Втулка переходная МК4/МК2 JET 59500072

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 3 964 р.
Цена за ед. товара: 991 р. 1100 р.

Втулка переходная МК4/МК3 JET 59500073

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 3 964 р.
Цена за ед. товара: 991 р. 1100 р.

Втулка переходная МК5/МК3 JET 59500074

Втулка переходная МК5/МК4 JET 59500075

Дорн для сверлильного патрона MК2х1/2x20UNF JET 59500076

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 620 р.
Цена за ед. товара: 405 р. 450 р.

Втулка переходная с КМ3 на КМ1 с лапкой GRIFF b111103

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 748 р.
Цена за ед. товара: 437 р. 504 р.

Оправка переходная на сверлильный патрон с КМ1 на B10 с лапкой GRIFF b161008

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ1 на B12 с лапкой GRIFF b161009

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ1 на B16 с лапкой GRIFF b161010

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ1 на B18 с лапкой GRIFF b161011

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ2 на 1/2"20UNF с лапкой GRIFF b163018

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 212 р.
Цена за ед. товара: 303 р. 350 р.

Оправка переходная на сверлильный патрон с КМ2 на B10 с лапкой GRIFF b161014

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ2 на B12 с лапкой GRIFF b161015

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ2 на B18 с лапкой GRIFF b161017

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 120 р.
Цена за ед. товара: 280 р. 323 р.

Оправка переходная на сверлильный патрон с КМ3 на B12 с лапкой GRIFF b161021

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 400 р.
Цена за ед. товара: 350 р. 404 р.

Оправка переходная на сверлильный патрон с КМ3 на B16 с лапкой GRIFF b161022

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 400 р.
Цена за ед. товара: 350 р. 404 р.

Оправка переходная на сверлильный патрон с КМ3 на B18 с лапкой GRIFF b161023

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 400 р.
Цена за ед. товара: 350 р. 404 р.

Оправка переходная на сверлильный патрон с КМ3 на B22 с лапкой GRIFF b161024

Упаковкой выгоднее!
Цена за упаковку 4 шт.: 1 400 р.
Цена за ед. товара: 350 р. 404 р.

В данную рубрику входят дополнительные приспособления для сверлильных станков. Среди них есть оправки, предназначенные для закрепления патронов, и дорны, соединяющие сверлильный патрон со станком. Также сюда входят втулки, помогающие достигнуть соответствия углов конуса хвостовика устанавливаемого инструмента, и шпиндели станка.

Конус морзе своими руками

Евросамоделки — только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Обратная связь
  • Лучшие самоделки
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Строительные калькуляторы Расчеты онлайн

Что такое конус Морзе?

Для оперативного центрированного варианта установки инструмента применяется хвостик в виде конуса. Чаще всего во фрезах и сверлах используется именно конус Морзе. Он может быть различных размеров.

Хвостик этого конуса может быть сделан в различных вариациях. У него может присутствовать резьба, лапки. Данных элементов может и не быть. Внутри резьба предназначена для фиксации инструмента при помощи штока. Она позволяет создавать надежное крепление инструмента, делает проще его вынимание при заклинивании. У лапки двойное предназначение. Она делает более простым высвобождение из шпинделя конуса. Также она не дает возможности провернуть конус морзе при огромной нагрузке.

В некоторых инструментах имеется огромная система канавок, различных отверстий. Через них поступает охлаждающая жидкость, а также составы для смазки.

На станках ЧПУ применяется автоматическая замена инструмента. Для данных целей был создан инструментальный вариант. Он способен нивелировать такие минусы конуса Морзе, как:

  1. постоянное заедание хвостика в шпинделе;
  2. значительную длину хвостика;
  3. маленькая площадь хвостика и маленький осевой упор;
  4. большое количество трудностей, которые появляются при установке конуса в автоматическом режиме;
  5. невозможность автозамены инструмента.
Читайте так же:
Регулировка оборотов асинхронного двигателя своими руками

Узнать цену на конус Морзе под патрон вы можете на сайте smolmotor.ru.

Существует большое количество видов конусов Морзе. Они различаются собственными размерами. Бывают конусы стандартного размера, а бывают укороченные.

Конический хвостик конуса назван так за счет своей формы. За счет подобной специфичной конструкции детали надежно скрепляются между собой. Такой хвостик прекрасно подходит для присоединения сверла. Для того, чтобы обеспечить высокую функциональность устройства, необходимо правильно подобрать его размеры.

Конус Морзе является наиболее совершенной версией обыкновенного конического хвостика, предназначенного для крепления. Он зачастую применяется для различных устройств.

Для некоторых целей длина конуса оказалась достаточно большой. Поэтому был создан конус Морзе укороченный. Более толстая часть обычного конуса была удалена для его создания. Так появился укороченный вариант.

Широко применяется инструментальный вариант конуса. Есть определенные стандарты для таких конусов. По ГОСТу определено три исполнения конусов.

Фрезерные оправки

Конусы – самый распространенный тип хвостовиков фрезерных патронов. Преимущества: быстрая смена оснастки и инструмента, высокая точность центрирования, надежность крепления.

На сегодняшний день фрезерные оправки производятся со следующими хвостовиками:

1) Конус Морзе (DIN 228, ГОСТ 25551, конусность 1:19

1:20). Для ЧПУ не предназначен, один из самых старых инструментальных конусов. Ставится на универсальные фрезерные центры, сверлильные станки. Самоторможение или самозаклинивание не позволяет автоматически поменять оснастку, как на автоматическом оборудовании. Как правило, отбалансированы на частоту вращения не более 12000 об/мин.

2) Конус 7:24 ISO, соотношение 7:24 (SK – DIN 69871, BT – MAS 403, NT – DIN 2080). Как правило, отбалансированы на частоту вращения не более 25 000 об/мин.

SK и BT применяются на станках с ЧПУ и позволяют автоматически заменять инструмент. Вид NT ставится на универсальное оборудование, где невозможна автоматическая смена оснастки, сюда относятся также советские фрезерные или расточные станки. Конусы 7:24 ускорили процесс металлообработки, но конструкция из-за массы все равно оставалась достаточно медленной. Скорость вращения можно было разогнать максимум до 25 000 оборотов в минуту. Для обработки алюминия и других мягких материалов нужны были более легкие конструкции, которые можно было бы разгонять до больших оборотов, при этом сохраняя быстросменность оснастки. Тогда появилось решение этих задач – виды HSK и PSK.

3) Современные конусы – HSK (соотношение 1:10), PSK Capto (соотношение как у Морзе 1:19

1:20). Стандарт DIN 69893. Позволяют работать на больших оборотах, и предназначены для автоматических центров с числовым программным управлением. Скорость вращения можно разогнать до 40 000-50 000 оборотов в минуту. В HSK есть возможность закреплять токарные резцы через переходники.

4) Цилиндрический хвостовик. Находят применение на фрезерном или сверлильном оборудовании, их можно вставить в более крупный цанговый патрон, или в Weldon, а также в осевой держатель инструмента на токарном центре.

Особенности патронов с конусом Морзе

Основной размерный ряд Морзе по номерам: от 0 до 6. Метрические размеры: 80, 100, 120, 160, 200. Помимо шпинделя КМ может вставляться в заднюю бабку токарного оборудования.

1. Хвостовик Морзе с лапкой – MTA

Оправки MTA с лапкой используют для сверления в токарных, фрезерных и сверлильных центрах. Переходные втулки для Морзе расширяют возможности оборудования.

Хвостовики MTA предназначены в основном для закрепления сверл.

Читайте так же:
Матирование нержавеющей стали своими руками

2. Хвостовик Морзе с резьбой – MTB

Оснастка MTB фиксируется на резьбу (осевое отверстие с резьбой в хвостовике). Такое крепление более надежное и жесткое, подходит для фрезерных операций на фрезерных центрах.

Хвостовики MTB предназначены в основном для фиксации фрез.

3. Хвостовик Морзе укороченный – B

Укороченные хвостовики применяются в основном в сверлильной оснастке.

Основные размеры: В7, В10, В12, В16, В18, В22, В24, В32, В45, где цифра после буквы B обозначает больший диаметр.

Особенности оснастки с конусами 7:24 ISO

Оправки имеют размерный ряд хвостовиков в зависимости от величины станка: 30, 40, 50 и т.д. Например, BT40 – для средних по размеру обрабатывающих центров. Проще всего определить размер метрического конуса по внутренней резьбе. Для 30-го размера резьба будет M12, для 40-го – M16 и для размера 50 – M24. Передача крутящего момента осуществляется через пазы во фланце. Существуют также оснастка не с метрической резьбой, а с дюймовой, например типа CAT.

Вторая (обратная) часть оправки используется для фиксации режущих элементов – напрямую или через цанги (ER, OZ, EOS, SC, GT, TC и другие).

Получается, что в цанговые патроны можно крепить монолитные фрезы, сверла, метчики и другой режущий инструмент с цилиндрическим хвостовиком. В другие виды оснастки можно зажимать сверла, в том числе корпусные, насадные фрезы, включая модели со сменными пластинами. Существуют также конуса ISO для расточных систем.

Под каждый вид оснастки используется свой штревель (винт) для фиксации и удержания в станке во время обработки.

По подаче смазочно-охлаждающих жидкостей оправки ISO бывают четырех типов:

A – нет подачи СОЖ

B – подача СОЖ через фланец

AD – подача СОЖ через центральное отверстие

AD/B – подача СОЖ через отверстие или фланец

Кратко рассмотрим отличительные особенности распространенных стандартов метрических конусов.

Основные особенности SK:

Стандарты DIN 69871, ISO 7388/1, ГОСТ 25827 исполнение 2, DAT, AT.

Возможно использование на станках с ЧПУ.

Чаще всего ставятся на европейские станки.

Закрепление в шпинделе штревелем или винтом.

Два паза на фланце оправки, паз вырезан полностью на всю ширину фланца.

Визуально два кольца на фланце одинаковой ширины.

Пазы на фланце SK:

Основные особенности BT:

Стандарты MAS 403, JIS B 6339.

Возможно использование на ЧПУ.

Чаще всего стоят на азиатских станках.

Закрепление в шпинделе штревелем или винтом.

Два паза на фланце оправки, паз вырезан не до конца фланца.

Визуально верхнее кольцо на фланце шире, чем нижнее.

Пазы на фланце BT:

Основные особенности NT:

Стандарты DIN 2080, ISO 7388/2, ГОСТ 25827 исполнение 1.

Использование на универсальном оборудовании.

Нельзя использовать на автоматических центрах, только ручная смена оснастки.

Закрепление в шпинделе штревелем или винтом.

Два паза на фланце оправки.

Визуально одно кольцо на фланце и удлиненная резьбовая часть в виде цилиндра.

Некоторые модели могут закрепляться в станке как на внутреннюю резьбу, так и за внешние выступы удлиненной части оправки.

Пазы на фланце NT:

Основные особенности HSK: Стандарт DIN 69893.

Укороченный облегченный конус 1:10

Закрепление в оборудовании не через штревель, а разжимной цангой.

Крутящий момент передается через пазы.

Существует несколько видов HSK: A, T (для токарного инструмента), B, C, D, E и F.

Используется как на центрах с ЧПУ, так и с ручной сменой инструмента (C и D).

A, B, C и D применяются на низкоскоростных станках, E и F – для высокоскоростной обработки (симметричны во избежание биения).

Облегченная конструкция, скорость доходит до 50 000 об/мин.

Можно фиксировать токарные резцы и державки с помощью переходников.

Читайте так же:
Сеялка для травы своими руками

Сечение оснастки не круг, а полигон (треугольник с округлыми углами и вогнутыми сторонами).

Крутящий момент передается через полигональный конус.

Более жесткая конструкция и более точное позиционирование, чем у HSK.

Дороговизна оснастки, зачастую использование материально нецелесообразно.

Преимущества современной оснастки HSK и PSK в полной мере можно оценить при обработке легких материалов – дерева, алюминия и т.д.

Особенности фрезерных оправок с цилиндрическим хвостовиком

Основные особенности оправок с цилиндром: Прямой цилиндрический хвостовик с лыской или без нее.

Обычно закрепляются на фрезерном или сверлильном станке в более крупный цанговый патрон, или в Weldon, а также в осевой держатель инструмента на токарном станке.

Цанговые патроны удобно использовать при большом вылете и для фиксации цанг малого размера. Чаще всего оснастку такого вида относят к переходникам-удлинителям и используют во фрезерных обрабатывающих центрах. Мини-гайка позволяет работать в труднодоступных местах.

Сверлильные патроны рекомендуются для токарного оборудования.

Фрезерные патроны с цилиндрическими хвостовиками по своей сути – переходные втулки, но также могут использоваться в токарных станках в держателях для расточных резцов (с лыской).

Вот и все. Ничего сложного, правда? Надеемся, статья помогла вам разобраться в ассортименте патронов для обрабатываемых центров. Как правило, производители станка в характеристиках указывают тип используемого патрона (BT, SK или другой). Дальше останется только выбрать такие патроны, которые необходимы для тех или иных технологических операций.

Ниже представлено видео по типам инструментальных конусов на фрезерных станках:

Технология обработки конических поверхностей

Поверхность конуса состоит из следующих величин (рис. 1): сечение D – большее и сечение d – меньшее. Между двумя поверхностями, образованными сечениями D и d, имеется расстояние I. α – угол уклона конуса, 2α – угол конуса.

Геометрия конуса

Рис. 1. Геометрия конуса

Соотношение K=(D – d)/I показывает конусность предмета. При написании его обозначают со значком деления, либо десятичной дробью. Например: 1:20, 1:50 или 0,05, 0,02.

Соотношение Y=(D – d)/(2I) = tgα имеет название уклон.

Обработка поверхностей с конусностью

В производстве часто приходится производить обработку валов, у которых конструктивно заложены конические переходы между диаметрами шеек. При длине конусной поверхности не более 50 мм, ее протачивают широким резцом. Резец при этом должен быть с углом уклона режущей кромки, аналогичным углу уклона конуса на изготовленном изделии. Движение подачи с резцом – поперечное.

Чтобы снизить деформации плоскости, образующей конус, ликвидировать погрешности, влияющие на угол уклона конуса, кромку резания режущего инструмента закрепляют вдоль оси заготовки. Если режущая кромка резца имеет длину, превышающую 15 мм, при обработке появляются вредные вибрации.

Вибрации увеличиваются при следующих условиях:

  • увеличение длины заготовки;
  • уменьшение диаметра обрабатываемой детали;
  • меньше угол уклона конуса;
  • близкое расстояние конуса к центру заготовки;
  • увеличение вылета резца;
  • слабое закрепление резца в штатном положении.

Воздействие вредных вибраций негативно сказывается на качестве обработки. На поверхности возникают следы, неровности, шероховатости. Благодаря использованию резцов с широкой режущей частью вибраций удается избежать. В этом случае радиально направленное усилие при резании способно нарушить настройки резца, изменив угол уклона.

Конуса со значительными наклонами обрабатываются с поворотом верхних салазок суппорта и держателя резца на угол α (рис. 2). Он равняется углу конуса, который обрабатывается. Рукояткой салазок перемещается резец. Ручная подача имеет свои недостатки. Главный из них – неравномерность движения.

Иногда из-за этого на поверхностях возникают шероховатости. Чистота обработки зависит от квалификации исполнителя. Данный способ приемлем для конусов с длинами, равнозначными ходу верхних салазок.

Обработка конической поверхности путем поворота верхних салазок суппорта

Рис. 2. Обработка конической поверхности путем поворота верхних салазок суппорта:

Читайте так же:
Компрессор на 12 вольт своими руками

2α – угол конуса; α – угол наклона конуса

Смещением задней бабки станка производится обработка конусных плоскостей с углом α=8…10˚ и увеличенными длинами (рис. 3).

Обработка конической поверхности путем смещения задней бабки

Рис. 3. Обработка конической поверхности путем смещения задней бабки:

d и D – меньший и больший диаметры; l – расстояние между плоскостями; L – расстояние между центрами: h – смещение заднего центра; α – угол уклона конуса

Если углы небольшие, sinα ≈ tgα.

h≈L(D-d)/(2I), где L – промежуток между центрами, D – большое сечение, d – малое сечение, I – промежуток между поверхностями.

В случае, если L=I, то h=(D-d)/2.

Сдвиг задней бабки контролируется по градуировке на краю плиты опоры напротив маховика. С торца задней бабки также имеются метки. Каждое деление равно 1 мм. Если шкала отсутствует, сдвиг рассчитывают по обыкновенной линейке, которую прикладывают к плите опоры.

Чтобы достичь соответствия конусности для потока изделий, которые обрабатываются данным методом, параметры деталей и отверстия для центровки должны иметь минимум погрешностей. Смещающиеся центры станка при работе провоцируют износ центровочных отверстий обрабатываемых деталей.

Рекомендуется сначала подвергнуть обработке плоскости конусов, после этого поправить отверстия для центровки. В конце окончательно проточить заготовку чистовым способом. Чтобы избежать разбивания отверстий для центровки и снижения износа центров, целесообразно работать, используя закругление вершин.

Регулярно использованным методом обработки конических плоскостей являются копиры. Плита 7 с копировальной линейкой 6 (рис. 4) закрепляется на станине. По линейке двигается ползун 4. Тягой 2 при помощи зажима 5 он подсоединен к суппорту 1. Чтобы суппорт без труда передвигался поперек, откручивается болт поперечной подачи.

От движения суппорта 1 вдоль станка резец приобретает двойное перемещение: поперек за линейкой-копиром и вдоль за суппортом. На движение в поперечном направлении влияет угол поворота линейки 6 по отношению к оси 5 поворота. Поворотный угол копира контролируют по шкале плиты 7, крепя линейку с помощью винтов 8.

Подачу резца на нужную глубину врезания осуществляют с помощью ручки передвижения салазок суппорта вверху. Внешние конические плоскости подвергают обработке проходными резцами.

Обработка конической поверхности с применением копирных устройств

Рис. 4. Обработка конической поверхности с применением копирных устройств:

а – при продольном перемещении суппорта: 1 – суппорт; 2 – тяга; 3 – зажим; 4 – ползун; 5 – ось; 6 – копирная линейка; 7 – плита; 8 – болт;

б – при поперечном перемещении суппорта: 1 – приспособление; 2 – копир; 3 – копирный ролик; 4 – внутренняя коническая поверхность; α – угол поворота копирной линейки

Методы изготовления внутренних конусных плоскостей

Внутри детали выборка конических плоскостей 4 (рис. 4) осуществляется с помощью копира 2, который закрепляется в пиноль задней бабки либо в револьверную головку. В держателе резца поперечного суппорта крепится устройство 1, имеющее ролик для копирования и проходной резец с остроконечным профилем.

Когда суппорт передвигается в поперечном направлении, ролик для копирования 3, соответствующий профилю копира 2 перемещается в продольной плоскости. Через устройство 1 движение передается на резец. Внутри конических поверхностей обработка производится с помощью расточных резцов.

Чтобы получить отверстие с конической конфигурацией в металле со сплошной структурой, в заготовке сверлят, растачивают, развертывают отверстия. Комплектами конических разверток производят дальнейшую обработку. Сечение заранее заготовленного отверстия должно быть меньше на 0,5…1 мм, чем заходное сечение развертки.

Изготавливая высокоточное коническое отверстие, перед осуществлением развертки производится обработка коническим зенкером. С этой целью в металле со сплошной структурой просверливается отверстие сечением на 0,5 меньше готового сечения конуса и обрабатывается зенкером. Припуск для зенкера уменьшают использованием ступенчатых сверл с различными сечениями.

Как обрабатывают центровые отверстия

Цикл изготовления и ремонта валов предусматривает наличие центровальных отверстий на их торцах. Эти технологические углубления необходимы для качественного крепления и избежание биений при вращении вала. Центровальные отверстия изготавливаются особо тщательно, с соблюдением высоких технологий.

Читайте так же:
Вискозиметр своими руками из шприца

Отверстия для центровки располагаются строго на одной оси. Оба конусных отверстия на их торцах должны быть абсолютно одного размера, какими бы ни были сечения шеек на краях вала. В противном случае снижается качество обработки и повышается износ отверстий для центровки.

Центровые отверстия

Рис. 5. Центровые отверстия:

а – незащищенные от повреждений;

б – защищенные от повреждений

Образец центровальных отверстий показан на рис. 5. Максимальную популярность получили центровки, где угол конуса равняется 60˚. При изготовлении тяжелых валов применяют отверстия с углами 75˚ либо 90˚. Во избежание упирания вершины центра в обрабатываемую деталь, в центровальных отверстиях вытачивают цилиндрические выточки диаметром d.

Фаска, выполненная под углом 120˚, защищает центровые отверстия, используемые много раз, от повреждений и забоев (рис. 5, б). Центровые отверстия небольших деталей обрабатывают различными способами. Заготовка вала крепится в патроне с самоцентровкой, в пиноль задней бабки помещают патрон для сверления, имеющий центровочный инструмент.

Сверлом для цилиндрических отверстий выполняют начальный этап изготовления центровых отверстий больших сечений (рис. 6, а). Последующие этапы обработки выполняются однозубой (рис. 6, б) либо многозубой зенковкой (рис. 6, в). Центровые отверстия сечением 1,5…5 мм изготавливаются с помощью комбинированных сверл. Они могут быть либо с предохранительной фаской, либо без нее (рис. 6, г, д).

Центровые инструменты

Рис. 6. Центровые инструменты:

а – цилиндрическое сверло; б – однозубая зенковка; в – многозубая зенковка; г – комбинированное сверло без предохранительной фаски; д – комбинированное сверло с предохранительной фаской

Обрабатывая вал на предмет изготовления центровых отверстий, его подвергают вращению. Подача осуществляется ручным способом. Предварительно подрезается с помощью резца обрабатываемый торец. Размер углубления для центровки контролируют инструментами: шкалой пиноли либо лимбом маховика задней бабки.

Предварительной разметкой на валу добиваются соосности изготавливаемых центровых отверстий. Если заготовка длинная, в момент зацентровки ее поддерживают с помощью люнета. Разметку центровых отверстий производят с помощью угольника. Разметив заготовку, накернивают места для центровых отверстий.

Валы с сечениями шеек, не превышающими 40 мм, накернивают при помощи специального устройства (рис. 7), не используя предварительную разметку. Корпус 1 одной рукой ставят на торец вала 3. Ударяя молотком по кернеру 2, получают отметку центра отверстия.

Приспособление для накернивания центровых отверстий без предварительной разметки

Рис. 7. Приспособление для накернивания центровых отверстий без предварительной разметки:

1 – корпус; 2 – кернер; 3 -вал

Центровые отверстия с неравномерным износом либо с повреждениями подвергаются исправлениям с помощью резца. Для осуществления операции каретка суппорта станка, находящаяся сверху, поворачивается на угол конуса.

Как осуществлять контроль изготовления конических поверхностей

Внешние конуса измеряются с помощью универсального угломера либо специального шаблона. Калибр-втулки служат для проверки точных параметров конуса. Кроме угла конуса, они показывают и его сечения. Карандашом наносят на обработанную поверхность несколько меток. Калибр-втулку помещают сверху на контрольный конус.

Калибр-втулка для проверки наружных конусов

Рис. 8. Калибр-втулка для проверки наружных конусов (а) и пример ее применения (б):

Поворачивая инструмент в разные стороны и легко нажимая на него, добиваются, что метки на качественно обработанном конусе стираются полностью. Конец конусной детали должен быть расположен между отметками А и В.

Контроль конических отверстий осуществляют калибром-пробкой. Качество отверстия показывает плотность прилегания калибра к обработанной поверхности. Нанесением тонкого слоя красящего вещества на пробку калибра, можно определить: если краска исчезнет возле большого сечения – угол конуса занижен, если возле малого – увеличен.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector