Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тиристор. Описание, принцип работы, свойства и характеристики

Тиристор. Описание, принцип работы, свойства и характеристики.

Тиристор — это довольно архаичный полупроводниковый прибор, ранее широко применявшийся в качестве силового ключа для управления мощной нагрузкой.
И хотя в настоящее время данный элемент уступает свои позиции симисторам (в цепях переменного тока) и силовым транзисторным ключам (в цепях постоянного тока), кривая совокупного радиолюбительского интереса к устройствам, выполненным на тиристорах, всё ещё находится на достаточно высоком уровне.
Приобщимся к процессу получения знаний, касающихся характеристик, принципов работы, а также способов управления тиристорами, и мы.

Итак.
Тиристор — это трёхвыводной полупроводниковый прибор, с тремя (иногда четырьмя) p-n-переходами и имеющий два устойчивых состояния:
— состояние низкой проводимости (закрытое состояние);
— состояние высокой проводимости (открытое состояние)
.

Тиристор
Рис.1

На Рис.1 показано устройство тиристора и двухтранзисторная эквивалентная модель, позволяющая пояснить работу прибора в режиме прямого запирания.
Добавим для кучи вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления тиристорами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).

ВАХ тиристора
Рис.2

1. Для начала рассмотрим случай, когда управляющий электрод тиристора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0).
Тока через нагрузку нет (участок III на ВАХ), тиристор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на аноде тиристора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точка II на ВАХ) тиристор отпирается, падение напряжения между анодом и катодом падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого тиристора (участок I на ВАХ).
Чтобы закрыть тиристор нужно снизить протекающий через нагрузку ток (или напряжение на аноде) ниже тока удержания. Причём данное анодное напряжение должно быть многократно ниже отпирающего напряжения.

2. Для того, чтобы снизить величину напряжения включения тиристора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение тиристора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике больше не будет, и ВАХ тиристора станет похожа на ВАХ диода.
Абсолютно так же, как и в прошлом случае, чтобы закрыть тиристор необходимо снизить протекающий через нагрузку ток (или напряжение на аноде) ниже значения тока удержания.

Обратная часть вольт-амперной характеристики (участок IV) соответствует режиму обратного запирания полупроводника и обычно не используется. Тиристор остается закрытым, пока не наступит тепловой пробой.

Итак, определились. Для открывания тиристора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на аноде) ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — тиристор будет открываться при замыкании S1 в каждый момент превышения анодным напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом выпрямленного сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный способ управления тиристором посредством подачи на управляющий электрод постоянного тока прост, но обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — 200мА для КУ202).
Реальные величины тока управляющего электрода, достаточного для включения тиристора при комнатных температурах, обычно в несколько раз меньше цифр, приведенных в паспортных характеристиках (20-40мА для КУ202). Однако в большинстве случаев для управления тиристорами используется всё ж таки импульсный метод, либо метод, при котором открытый тиристор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на ее элементах.

Читайте так же:
Что ценного в платах

Рассмотрим подобный метод на примерах.
На Рис.3 представлена простейшая классическая тиристорная схема регулятора мощности.

Диодный мост Br1 преобразует двуполярное сетевое напряжение в однополярное удвоенной частоты, что позволяет регулировать напряжение на нагрузке в течение обоих полупериодов напряжения сети.
В качестве управляющего напряжения здесь используется часть анодного напряжения тиристора, поступающая через резисторы R1 и R2 на управляющий электрод полупроводника. Резистором R2 изменяют момент открывания тиристора VS1 и, следовательно, среднее значение напряжения на нагрузке.
Чем меньше будет значение R2, тем больше будет ток, поступающий на управляющий электрод, тем раньше откроется тиристор. При R2=0 — мощность в нагрузке максимальна (верхняя диаграмма).
При повороте ручки потенциометра R2, его сопротивление увеличивается, ток на управляющем электроде уменьшается, поэтому тиристор откроется уже не в начале полуволны, а спустя некоторое время, когда ток достигнет необходимого уровня.
Помимо этого, при увеличении сопротивления R2, управляющий сигнал получает дополнительную задержку, благодаря действию фазосдвигающей RC-цепочки, образованной R1, R2 и С1, что, в свою очередь, позволяет ещё больше расширить диапазон регулировки мощности.

Если нагрузка такова, что её необходимо запитать двуполярным переменным напряжением, схему можно преобразовать без какого-либо увеличения сложности.

Всё тоже самое, только с другой стороны.

Как мы уже упоминали, рассматриваемые устройства являются простейшими и не лишены определённых недостатков. Их основными минусами являются слабая помехозащищённость, сильная зависимость напряжения на нагрузке от температуры и необходимость индивидуального подбора резисторов для каждого экземпляра тиристора. К тому же, в связи с низким входным сопротивлением тиристора по управляющему входу, работа фазосдвигающей RC-цепи оказывается весьма неэффективной, что, в свою очередь, обуславливает недостаточно широкий диапазон регулировки мощности.
Значительно лучшим образом работают схемы, в которых формирование импульсов управления происходит посредством отдельных схем, выполненных на транзисторах, цифровых либо специализированных микросхемах. Однако, поскольку, всё имеет свои плюсы и минусы, то расплачиваться за усовершенствования приходится усложнением конструкции и необходимостью применения отдельного источника питания.

Поскольку в цепях постоянного тока тиристоры давно и без сожаления уступили место мощным транзисторам, специально спроектированным для работы в ключевых режимах, то и рассматривать их в данном контексте не имеет никакого основания.
А вот основные характеристики отечественных и зарубежных тиристоров окажутся совсем не лишними в копилке знаний пытливого радиолюбительского ума.
Тиристоры, максимальное прямое напряжение которых не дотягивает до амплитудного значения напряжения сети (300В) к рассмотрению также принимать не станем.

А на следующей странице мы рассмотрим принцип работы, свойства и характеристики симметричных триодных тиристоров — симисторов.

Схема включения симистора вместо реле

Схема включения симистора вместо реле

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

Схема включения симистора вместо реле

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – "затвор"). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

Читайте так же:
Лебедка на подъемный кран

А это эквивалентная схема симистора выполненного на двух тиристорах.

Схема включения симистора вместо реле

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Схема включения симистора вместо реле
Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Схема включения симистора вместо реле

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Читайте так же:
Датчик движения для включения света фото

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Схема включения симистора вместо реле
Оптосимистор MOC3023

Схема включения симистора вместо реле
Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как "не подключается".

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Бывает, нужно подключить какое-то достаточно мощное устройство через контакты реле или даже просто обычного выключателя. Контакты, как правило, не очень мощные и рассчитаны на малые токи, поэтому они впоследствии просто выгорают. Если же их разгрузить, то служат они гораздо дольше и надежнее. А разгрузить можно, например, следующим образом.

Существует такой электронный прибор, который называется симистор. Еще его называют симметричным тиристором. Имеет он три электрода: анод, катод и управляющий электрод. В открытом состоянии симистор проводит ток от анода к катоду и обратно, в закрытом – не проводит. То есть, действует, как обычный выключатель. То обстоятельство, что симистор проводит ток в обоих направлениях, позволяет включить его в схему переменного тока для управления нагрузкой.

На фото электроды тиристора обозначены так: А – анод, К – катод, У – управляющий электрод. Для нашего случая подойдет симистор с маркировкой КУ208Г.

А управлять симистором тоже просто. Если соединить его управляющий электрод через резистор 100 ом с анодом, то симистор открывается. И наоборот, если это соединение разорвано, симистор закрыт. В цепи управления течет очень небольшой ток, благодаря которому симистор и открывается, пропуская по основной цепи анод-катод гораздо больший ток, до 10 ампер. А это уже достаточная нагрузка, более 2 киловатт.Таким образом, если включить в управляющую цепь наши слабые контакты, мы можем через симистор управлять и мощной нагрузкой. Схема подключения достаточно проста, и объяснять здесь, в общем-то, и нечего.Единственное, что еще следует добавить, это о температурном режиме симистора. Как и любой подобный прибор, при значительных нагрузках он тоже прогревается, хоть и работает в так называемом ключевом режиме. Электронщики знают, что это такое. Поэтому в некоторых случаях бывает необходимо разместить симистор на охлаждающем радиаторе. Им может послужить даже просто алюминиевая или медная пластина достаточных размеров. На фото показан такой симистор, укрепленный на алюминиевом радиаторе.А как определить, греется симистор или нет? Пальцами. Не будем же ради такого случая собирать электронный термометр. Однако, внимание! Нельзя касаться схемы и корпуса тиристора в том числе, когда все это находится под напряжением! Сначала все необходимо обесточить, отключить от сети, и уж только тогда щупать. Иначе может и тряхнуть нехило.

Если симистор чуть теплый после того, как проработал под нагрузкой, скажем, минут 10-15, ничего страшного. А если горячий – надо ставить на радиатор.

Применить такую схемку можно в самых разных ситуациях. Можно, например, разгрузить контакты механического терморегулятора, описанного в статье Масляный радиатор? Да, но правильный., или, скажем, включать мощную сирену контактами оптоэлектронного выключателя. Такие продаются рублей за 300, с ними можно простейшую охранную сигнализацию соорудить. Этот выключатель реагирует на движение в зоне видимости. Даже просто от движения руки на расстоянии 5-6 метров от него срабатывает.
Читайте так же:
Канифоль для чего используется

Правда, у меня такой выключатель установлен на освещение в прихожей. Настроен так: зашел – свет включился. Вышел – свет погас через 20 секунд. Но я все равно под ним симистор пристроил, уж больно хилые там контактики. А случилось раз, лапочка замкнула накоротко, и контакты в этом выключателе подгорели. Отремонтировал, конечно, и воткнул симистор. Теперь, если подобное случится еще раз, контактики целыми останутся, а просто автоматы после счетчика сработают. Симистор с кратковременными перегрузками справляется вполне успешно, выдержит.

© Юрий Болотов 2006

Хотите что-то сказать? Приходите на мой видеоканал, где можно общаться в комментариях к видеороликам.

Схема включения симистора вместо реле

Вывод, который через R1 подключается к первой ножке оптосимистора, подключаем к любому цифровому пину Андуино. В моём примере это будет 7 пин.

Вывод от 2-й ножки оптосимистора (у меня подключено через индикаторный светодиод) подключаем к пину GND Ардуино.

Для работы с данным модулем подойдут те же скетчи, что использовались в статье про электромеханическое реле.

Скетч мигалка

Схема включения симистора вместо реле

Тактовая кнопка подключается с подтягивающим резистором 10к. Один контакт кнопки подключается к пину 5V, второй к любому цифровому пину Arduino, у меня это 14 пин, который может быть как аналоговым (А0), так и цифровым.

Скетч с тактовой кнопкой, при нажатии на неё лампочка загорится, при отпускании – погаснет.

int relayPin = 7;
int flag=0;

Результат” выполнения скетча на видео.

В отличии от электромеханического реле, здесь не получится использовать в качестве нагрузки дешёвую китайскую лампочку, в выключенном состоянии она будет тускло светится.

—>Автозапчасти и СТО —>

Предлагаю вашему вниманию простое зарядное устройство с использованием тиристора, которое под силам собрать своими рукамидаже начинающему радиолюбителю. Его можно использовать как самостоятельное устройство, так и в дополнение к существующему зарядному устройству, так как в схеме реализовано несколько типов защит.
Имеется защита от короткого замыкания, так как без подключённого аккумулятора на выходе отсутствует выходное напряжение. Так же устройство не выйдет из строя при неправильном подключении батареи, транзистор откроет тиристор только при правильном подключенииаккумулятора.
Трансформатор берём готовый или мотаем сами, мощностью 150-200 ватт, вторичная обмотка с напряжением 16-19 вольт. Вместо указанных на схеме тиристора и транзистора можно поставить соответственно КУ202 с любым буквенным индексом и КТ815. Резистором R4 подбирают минимальное напряжение включения зарядки, схема рассчитана на аккумуляторную батарею 12 вольт. Перед включением обязательно проверить правильность монтажа. Рекомендую, отличная вещь против ошибок.

По желанию, на выходе схемы к АКБ, можно добавить вольтметр и амперметр. Вольтметр подключается параллельно нагрузке, а амперметр последовательно, через линию "+".

Диодный мост рекомендую выполнить на диодах Д242

Простейшее ЗУ на тиристоре КУ 202 с защитой
Нажмите на изображение чтобы увеличить

Аналоги транзистора КТ815

Транзистор КТ 815 возможно заменить на отечественный аналог: КТ8272, КТ961, либо на его зарубежный аналог: BD135, BD137, BD139, TIP29A

Параметры КТ815 транзистора

Транзистор кт 815, а, б, в, г характеристики
Нажмите на изображение чтобы увеличить

Диод Д242, Параметры

Основные технические характеристики диодов Д242, Д242А, Д242Б:

ДиодUпр/IпрIoбрt вос обрUобр maxUобр имп maxIпр maxIпр имп maxfд maxТ
В/АмАмксВВААпФкГц°C
Д2421,25/103100101,1-60. +130
Д242А1,0/103100101,1-60. +130
Д242Б1,5/5310051,1-60. +130

Аналоги тиристора КУ 202

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Ремонт зарядного ЗУ-2М. Схема электрическая принципиальная зарядного устройства ЗУ-2М

1.После диодов напряжение будет примерно =20 В т.к. на диодном мосту упадет не менее 4 В.
(=20 В будет если отвод ХТ2 точно от середины обмотки. Измеряйте переменное напряжение между 3-5 точкой обмотки трансформатора, отнимите 4 вольта и получится постоянное напряжение после моста)

2.Транзисторы прозвонить можно любым стрелочным или цифровым мультиметром.
Для наглядности смотрите как проверить исправность радиоэлементов

3.У Тиристора: между анодом и катодом должно быть бесконечно большое сопротивление. Между катодом и управляющим электродом от 30 до 400 Ом. Анод у данного тиристора корпус, катод вывод что длиннее, управляющий, соответственно короткий. Если у Вас стрелочный мультиметр, то тиристор можно дополнительно проверить на срабатывание. Переключаем предел измерения сопротивления ×1. Минусовой щуп от прибора к катоду, плюсовой щуп к аноду тиристора, прибор покажет бесконечное сопротивление. Не отрывая щупов от тиристора, замкните анод с управляющим электродом, тиристор откроется, прибор покажет сопротивление десятки Ом.
Внимательно осмотрите плату на наличие трещин и непропаев, омовые резисторы часто бывают в обрыве, на глаз не заметишь, можно прозвонить не выпаивая. Удачи в ремонте.

Sergey2
Посмотреть профиль
Найти ещё сообщения от Sergey2
Файловый архив
Скачиваний: (4,977) 11.25 Гб
Загрузок: (103) 232.32 Мб

1.После диодов напряжение будет примерно =20 В т.к. на диодном мосту упадет не менее 4 В.
(=20 В будет если отвод ХТ2 точно от середины обмотки. Измеряйте переменное напряжение между 3-5 точкой обмотки трансформатора, отнимите 4 вольта и получится постоянное напряжение после моста)

2.Транзисторы прозвонить можно любым стрелочным или цифровым мультиметром.
Для наглядности смотрите как проверить исправность радиоэлементов

3.У Тиристора: между анодом и катодом должно быть бесконечно большое сопротивление. Между катодом и управляющим электродом от 30 до 400 Ом. Анод у данного тиристора корпус, катод вывод что длиннее, управляющий, соответственно короткий. Если у Вас стрелочный мультиметр, то тиристор можно дополнительно проверить на срабатывание. Переключаем предел измерения сопротивления ×1. Минусовой щуп от прибора к катоду, плюсовой щуп к аноду тиристора, прибор покажет бесконечное сопротивление. Не отрывая щупов от тиристора, замкните анод с управляющим электродом, тиристор откроется, прибор покажет сопротивление десятки Ом.
Внимательно осмотрите плату на наличие трещин и непропаев, омовые резисторы часто бывают в обрыве, на глаз не заметишь, можно прозвонить не выпаивая. Удачи в ремонте.

Спасибо за ответ.
1.Померил напряжение между 3-5 обмоткой=20В.Померил после диодов 12-13 вольт.
2. Транзисторы прозвонил,как как показано всылке,всё нормально,только я их со схемы не выпаивал.
3.Проверил теристор,как вы написали.Вроде нормально,плюс на анод,минус на катод-показывает огромное сопротивление, замыкаю анод и упр.электрод,стрелка падает даже за 0.

Значит все радиоэлементы в порядке.Что же тогда тупит.
Когда мерил ток,то заметил,что трансформатор очень сильно греется,рука не терпит.Хотя ток выдаёт.Должен он так греться или нет??

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector