Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простая схема драйвера для светодиодной лампы на 220 вольт для сборки своими руками

Простая схема драйвера для светодиодной лампы на 220 вольт для сборки своими руками

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

схема светодиодной лампы из Китая

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

cpc9909Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

распиновка

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа. схемаДрайвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». принцип работы схемыЗа это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. циклПроцесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. пикиЧастота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Читайте так же:
Нормы расхода бензина на бензопилу штиль

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Читайте так же:
Ремонт бензопилы нет искры
Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Характеристики и DataSheet микросхемы 4558D

Согласно своим техническим характеристикам указанным в datasheet, интегральная микросхема 4558D представляет собой сдвоенный операционный усилитель. Она отличается высоким коэффициентом усиления и имеет встроенную защиту от короткого замыкания. Ее изготавливают на едином кремниевом кристалле с использованием усовершенствованной эпитаксиальной технологии. Данное устройство широко применяется в аудиосистемах, радиомикрофонах, подслушивающих устройствах.

Цоколевка

Сдвоенный операционный усилитель 4558D выпускается в корпусе DIP8. Существуют также аналогичные микросхемы, изготавливаемые в других упаковках: 4558M в DMP8, 4558V в SSOP8, 4558L в SIP8, 4558D в SOP8. На рисунке ниже можно увидеть, как расположены выводы этой микросхемы и ознакомиться с ее внешним видом.

Распиновка 4558d

Назначение выводов по порядку:

  1. Выход первого усилителя.
  2. Инверсный вход первого усилителя.
  3. Вход первого усилителя.
  4. Минус питания.
  5. Вход второго усилителя.
  6. Инверсный вход второго усилителя.
  7. Выход второго усилителя.
  8. Плюс питания

Технические характеристики

Характеристики интегральной микросхемы 4558D, так же как и для транзисторов, делятся на две категории: максимально допустимые и электрические. Рассмотрим предельно допустимые характеристики. Все данные получены путём тестирования при температуре +25 О С, если для конкретного значения не указаны другие условия.

Перечислим предельные режимы:

  • максимальное напряжение питания V = ±18 В;
  • наибольший допустимый диапазон напряжения на входе V idr = 30 В;
  • предельно допустимое напряжение на входе V in = 15 В;
  • Максимальная ощность рассеивания P d = 570 МВт;
  • Диапазон температур хранения Tstg = от-55 до 125 О С.

Кроме предельных существуют также электрически. При тестировании большинства параметров соблюдались следующие режимы измерения: напряжение питания VS = ± 15 В, сопротивление температура окружающего воздуха Tamb=25 О С. Другие значения, при которых проводились те или иные конкретные измерения, приведены в таблице в специальной колонке «Режимы измерения».

Технические параметры 4558d

Аналоги

Аналоги микросхемы 4558d, как по характеристикам, так и по цоколевке можно назвать такие устройства: BA715, LA6458, MB3607M, AN1358, AN6562, AN6552, AN6572, AN4558, AN6552, LA6552, LA6458D, LM833CM, MC1458. Если ни одно из перечисленных устройств не подошло, можно попробовать использовать неполные аналоги: HA7-5102-2, KIA4558P , MC4558IN, MC4558CP1, MC4558CP1. Они могут отличаться от вышеперечисленных по электрическим параметрам, поэтому перед их использованием рекомендуется ознакомиться с их технической документацией. Отечественная промышленность схожих с 4558D не выпускает.

Производители

Среди крупнейших производителей данной микросхемы можно назвать такие компании: New Japan Radio, Philips Semiconductors, Texas Instruments, Fairchild Semiconductor, ARTSCHIP ELECTRONICS. В отечественных магазинах, чаще всего, можно найти продукцию выпущенную на предприятиях New Japan Radio и Texas Instruments. Реже встречаются изделия других фирм.

Схемы включения 4558d можете найти в datasheet на устройства, кликнув по ссылки выше с названием производителя.

Подключаем датчик звука к Arduino

Физическое окружение человека все время «умнеет», подстраиваясь под запросы и требования хозяина. Речь, конечно же идет об автоматизированных и роботизированных вещах, облегчающих труд и выполняющих все те функции, которые существу разумному делать слишком долго, тяжело или нудно. Большая часть техники такого рода работает с управлением на основе микроконтроллеров, которые в свою очередь, можно назвать миниатюрными компьютерами, ориентированными на контроль другого, более простого оборудования.

Одним из наиболее распространенных на текущий момент, за счет удобства применения и ширины возможностей, можно назвать Arduino, недостатков у которого попросту не существует в качестве системы управления и DIY-проектов, и профессиональной техникой, используемой на крупных и серьезных производствах.

Единственный вопрос становящийся перед проектировщиками «умных» устройств, использующих микроконтроллеры – легкое ими управление человеком, то есть обеспечение простого интерфейса контроля. Одно из наиболее логичных из приходящих на ум решений – человеческий голос, отдавая команды, которыми пользователь абсолютно вербальным образом сможет управлять работой логического выключателя, конечно в рамках заложенной в того программы. Только сразу встает проблема получения голосовых последовательностей устройством. Что ж, есть и решение – платы захвата звука, среди которых в разрезе технологии Arduino сразу вспоминаются KY-037 и KY-038, унифицированные и отличающиеся только размером микрофона.

Конечно, не стоит ждать от них записи MP3 или его полнофункциональной обработки. Но в нише восприятия голосовых команд названые платы-дополнения имеют полное право на существование.

Характеристики

Характеристики у обоих устройств KY-037 и KY-038 достаточно скромные, и отличающихся, как было сказано ранее, между собой только размером микрофона.

Читайте так же:
Чертежи картофелекопалки для мотоблока агро

  • питание — 3,5–5В;
  • цифровой выход — есть, однобитный, работающий в режиме индикации наличия звука или тишины;
  • аналоговый — присутствует, с градацией получаемого сигнала в 1024 уровня;
  • вес — в среднем 12..13 грамм;
  • предел чувствительности — до 5 метров;

Принципиальная схема и выводы устройства:

Сразу хочется заметить, что названые детекторы, регистрируют только достаточно громкие звуки и не очень чувствительны к их переходным состояниям, к примеру, используемым в словах или фразах. То есть, сделать выключатель или активатор реагирующий на хлопок и свист гораздо проще, чем запрограммировать систему распознавания голосовых команд с применением KY-037 или KY-038. Некоторые идеи по осуществлению требуемой функциональности будут представлены далее.

Обратите внимание на «регулятор чувствительности» отмеченный на фото платы. С его помощью можно варьировать значение характеристики, улучшая «слух» детектора, в установленных пределах.

Простые схемы использования

Чтобы продемонстрировать работу датчиков звука с Arduino можно собрать простую схему:

Резистор используемый в ней, берется номиналом в 220 Ом. Основная функциональность выражается в зажигании светодиода при обнаружении громких звуков и гашения его в случае тишины. Скетч:

// Диапазон минимальных и максимальных показателей, устанавливается
// для определения значения аналогового сигнала в тишине у платы
// захвата звука, все что будет отличаться служит указателем
// наличия изменений звукового фона. Определяется опытным путем.
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов IN_DIG цифровой вход с KY-037/038,
// IN_ANALOG аналоговый с нее же и OUT_LED пин управляющий светодиодом
const int OUT_LED = 9;
const int IN_ANALOG = A3;
const int IN_DIG = 1;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
>
void loop() <
// Примечание от составителя: если использовать нижеприведенную
// конструкцию, светодиод будет включаться при любом изменении
// звукового фона. Для определения наличия именно команды
// стоит изменить строку на if (AnalogRead(IN_ANALOG) > SilenceMax) <
if (AnalogRead(IN_ANALOG) > SilenceMax || AnalogRead(IN_ANALOG) < SilenceMin) <
DigitalWrite(OUT_LED, HIGH);
Delay(250);
DigitalWrite(OUT_LED, LOW);
>
// Или проще, используя логические значения цифрового входа (вставляется вместо конструкции
// if <>
//
//if ( DigitalRead(IN_DIG) == HIGH ) <
//DigitalWrite(OUT_LED, HIGH);
//Delay(250);
//DigitalWrite(OUT_LED, LOW);
>
>

Изменяя время задержки, между включением и гашением светодиода, а также пробным путем выведя значения «тишины» SilenceMax и SilenceMin, можно добиться работы приведенной схемы в роли детектора движения по звуку. Конечно, качество определения у него будет низкое, но вполне позволяющее применять конструкцию в цепях управления освещением темных мест. Достаточно добавить фоторезистор для определения текущего уровня видимости, в роли которого можно использовать специальную плату Arduino или обычный радиоэлектронный компонент, подключаемый через делитель.

Как видно по схеме, в ней используются два резистора – R1 на 10 кОм и R2 220 Ом. Светодиод LED в финальном варианте можно заменить на релейную группу, для подачи питания на «взрослые» лампы 220В. Скетч, управляющий всем перечисленным хозяйством:

#DEFINE D1 1
#DEFINE D3 3
#DEFINE A2 2
#DEFINE A4 4
// Характеристики «тишины»
const int SilenceMin = 625;
const int SilenceMax = 637;
// Задание портов: IN_DIG цифровой вход с KY-037/038, IN_ANALOG аналоговый с нее же
// OUT_LED пин управляющий светодиодом, IN_FLASH сигнал от фоторезистора.
const int IN_DIG = D1;
const int OUT_LED = D3;
const int IN_LIGHT = A2;
const int IN_ANALOG = A4;
void setup() <
pinMode(OUT_LED, OUTPUT);
pinMode(IN_ANALOG, INPUT);
pinMode(IN_DIG, INPUT);
pinMode(IN_LIGHT, INPUT);
>
void loop() <
if ( DigitalRead(IN_DIG) == HIGH && DigitalRead(IN_LIGHT) == LOW ) <
// При подключении фоторезистора, как на схеме в темноте он будет давать
// минимальный сигнал, так-как его сопротивление во мраке максимально.
// На свету будет поступать высокий уровень на вход Ардуино и этот
// блок кода не сработает
DigitalWrite(OUT_LED, HIGH);
delay(10000); // долгая задержка
DigitalWrite(OUT_LED, LOW);
>

Задержка подбирается экспериментально, в зависимости от конкретной чувствительности KY-037 или KY-038, а также их настроек, производимых регулятором на плате устройства.

Некоторая информация о голосовом распознавании

Здесь будут представлены общие идеи, позволяющие впоследствии создать систему голосового командного управления, естественно с ограничениями, накладываемыми мощностью Arduino.

Первое, что нужно учесть при проектировании – обращение к самому конкретному устройству, чтобы его функционирование не начиналось или прерывалось от случайно сказанного слова. То есть, перед отдачей команды нужно будет произносить не похожий на нее идентификатор конкретного контролера. К примеру: «К7 Включение». Описанное, кстати хорошо тем, что нет похожести согласно произносимых звуков.

Структура слова

Основное, на что нужно обратить внимание при проектировании систем распознавания звука – сама фонетика языка. В русском, есть гласные и согласные буквы. Последние еще и бывают шипящего, звонкого и глухого произношения. Устройства улавливающие звуковые волны, наиболее слышат, как раз, первые, вторые и третьи, а вот к последним «глуховаты». Поэтому, собственно и программировать конечный аппарат требуется именно на их определение, а не слова в целом. Опять же. Каждый человек обладает определенной дикцией и высотой тона голоса. Посудите сами, послушав, как одно и то же слово произносится мужчиной или женщиной. К тому же некоторые люди быстро проговаривают текст, другие медленнее. Все названые факторы требуется учесть при написании скетча обработки.

Читайте так же:
Что такое бойлер в утюге

Еще одно ограничение, накладываемое платам KY-037 и KY-038 – падение уровня улавливаемого сигнала в зависимости от расстояния до его источника. То есть, нужно предусмотреть сравнение именно разниц поступающих пиков, а не конкретных значений.

Некоторые рекомендации

Определение лучше производить, выявив высоту тонов и длительность произношения в каждом конкретном случае, под индивидуальные характеристики голоса человека. Впоследствии, ввести в скетч усреднение полученных данных на аналоговом входе, алгоритмы которых легко можно найти через поисковые системы. Последнее действие нужно для случаев, когда оператор охрип, осип, устал или находится под действием еще каких-либо факторов, изменяющих вокальные характеристики.

Разбор последовательности звуков проводится не точным соответствием, а логическими условиями, по причине пропуска некоторых в разговорной речи. То есть, предположим, существует массив, содержащий последовательность значений гласных и шипящих, аналогичных используемым в самой команде. Тогда разбор голоса будет выглядеть следующим образом:

Просьба обратить внимание, что приведенный кусок кода служит только целям ознакомления и понимания принципов разбора. Разницу пиков, о которых говорилось ранее, алгоритм не проверяет, сравнивая только конкретные значения.

#DEFINE D1 1
#DEFINE D3 3
#DEFINE A2 2
#DEFINE A4 4
// Характеристики «тишины»
const int SilenceMin = 625;
const int SilenceMax = 637;
const int IN_DIG = D1;
const int IN_ANALOG = A4;
// команда «включение» последний байт для блокирования ошибки
const int command_on[]=<857, 704, 740, 720, 740, 0>;
int tPOS=0; // текущее положение в разбираемом слове
void loop() <
int flag=0, GFONEM=ReadAnalog(IN_ANALOG), FOUND_COMMAND_ON = 0;
if (GFONEM==command_on[0]) < // совпадение первого звука последовательности, разбираем
flag=1;
while (flag>0) <
Delay(50); // пауза между произносимыми звуками, подбирается экспериментально
GFONEM=ReadAnalog(IN_ANALOG);
if (GFONEM>MinFONEM) < // ограничитель уровня именно гласных и шипящих,
// они будут выше, чем согласные
if (GFONEM==command_on[tPOS] || GFONEM==command_on[tPOS+1]) <
// все ок, идем по команде «включение», проверяя
// текущий звук или возможно следующий
FOUND_COMMAND_ON = 1;
> else <
FOUND_COMMAND_ON = 0;
flag = 1;
>
if ( tPOS == 5 ) < flag = 1 ); // найден последний звук, можно выходить
tPOS++;
>
>
>
if (FOUND_COMMAND_ON == 1) <
// выполнение действий при команде «включение»
// .
>
>

Для качественного распознавания речи используют различные более сложные алгоритмы. Например нейросетевой с предварительным разложением в ряд Фурье:

  1. Разделить фразу на отдельные слова, отслеживая промежутки тишины;
  2. Разложить запись каждого отдельного слово в ряд Фурье — таким образом определятся коэффициенты, соответствующие отдельным частотным составляющим;
  3. Пропустить вычисленные в п.2 коэффициенты через нейросеть, которая на выходе даст значение слов.

Чтобы такая нейросеть могла «распознавать» слова, подаваемые на её вход, предварительно она должна быть обучена!

Для выполнения такого обучения на вход сети подают эталонное слово, а затем с помощью специальных алгоритмов (например, обратного распространения ошибки) подбирают значения структурных коэффициентов нейронной сети, при которых нейросеть выдаёт правильное значение на выход.

Принципиальная Электрическая Схема Фонаря

Зарядный ток в амперах обычно выбирают в десять раз меньше численного значения емкости аккумулятора в ампер-часах. Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.


Если использовать светиков больше 6 штук — начинает сильно греться транзистор, яркость свечения падает. Виктор Донской.

Однако на практике это не совсем так, т. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем.
Ремонт налобного фонаря

Если все сделано правильно преобразователь начинает работать .

Простейший расчет показывает, что такой фонарик на светодиодах будет значительно экономичней.

Источником питания является одна минипальчиковая батарейка с напряжением 1,5 Вольт. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.

Каждый из нас выбирает тип фонарика по своему усмотрению: налобный фонарик;.

Когда светодиодный фонарик стоит на зарядке в сети В, категорический нельзя включать и отключать светодиоды кнопкой отключения, так как в момент переключения возникают скачки напряжения, что приведет к перегоранию светодиодов.

Ремонт обычного фонарика

Схема светодиодного фонарика

Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Так вот у меня есть специальная коробка для мобильных остатков шнурки, старые батареи, карточки и т. А располагать светодиоды удобнее в линейку, на расстоянии около 5 мм друг от друга, например, как это показано в конструкции на рисунке ниже. Следовательно конденсатор С будет оставаться в заряженном состоянии.

Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если блокинг генератор не запустился — вы перепутали концы обмоток трансформатора.

Парафин для заливания всего преобразователя.

Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя.

По заявлению производителя световой поток фонаря достигает метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече. Как получают переменный ток — преобразование механической энергии в электрическую энергию при помощи генератора.

Я измерял выходное напряжение, и оно составило В. Разумеется, возможно, применение и других светодиодов с напряжением питания 2, В.

Устройство заряда аккумуляторов для фонаря Для подзаряда аккумуляторов от бортовой сети автомобиля можно воспользоваться схемой, показанной на рисунке ниже.
Садовый фонарь на солнечной батарее. Как он …

Читайте так же:
7812 Характеристики схема подключения

Проекты по теме:

К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов.

Ремонт зарядного устройства Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие. После 15 мин.

Недостатком схемы является высокое 1,25V напряжение на входе FB вывод 8. Проволока 0,1 мм — витков с отводом от середины, намотанные на тороидальное колечко. Переделка схемы индикации режима зарядки аккумулятора Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора.

Светодиод был подключен через ограничительный резистор 6,2 Ом, ток потребления светодиода составил мА. Спасибо за статью. Вот такая простая защита. Минус крепим к плечевой части, с помощью завинчивающей крышки просто зажав провод крышкой.

Короткие импульсы повышенного потенциала отпирают p-n переход. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается. Только если сделать отдельную схемку для мигания на NE Ирина Спасибо, что ответили!


По этой причине от перегрева и сгорела первичная обмотка трансформатора. При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Однако на практике это не совсем так, т. Но, хочу заострить ваше внимание, если корпус фонарика металлический — зарядное устройство туда не монтируйте, а сделайте его выносным, то есть отдельно. Назначение кружка — двойное.

Состоит из двух ячеек по 2 вольта, соединённых последовательно. Типовыми неисправностями фонариков с аккумулятором являются: Выход из строя элементов сетевого выпрямителя диодов, электролитического конденсатора, резистора в цепи индикации ; Неисправность кнопки-выключателя легко чинится любой подходящей кнопкой с фиксацией или же рокерным выключателем ; Деградация старение аккумулятора;.

При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. Этот фонарик за доллара. Все три светодиода от аккумуляторов при номинальном напряжении 3,6 В потребляют ток не более 75…80 мА по мере разряда элементов ток будет снижаться, но все равно свечение будет достаточно ярким для подсветки. Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис. Как оказалось в ручке небыло радиоэлектронных элементов.
✅ ВОССТАНОВЛЕНИЕ ГЕЛЕВЫХ АККУМУЛЯТОРОВ СВОИМИ РУКАМИ

Как разобрать светодиодный аккумуляторный фонарь Lentel GL01

При этом аккумуляторы не придется вынимать из отсека фонарика, если на его корпусе установить соединительный разъем Х2. В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов.

Алюминиевая плечевая часть тюбика от зубной пасты , крема и т.

Для простоты и наглядного примера рассмотрим простейший генератор, состоящий из двух полюсного магнита и одной обмотки. Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Он настолько слаб, что полежав неделю, уже не горит.

Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света. В схеме для получения высокого КПД желательно использовать чип-компоненты.

На этот раз речь пойдёт о фонарике с аккумулятором. Его можно сделать из железной проволоки 0.

Если не сложно сбросьте параметры катушки. Диод Шоттки. Трансформатор я делал на небольшом ферритовом кольце — выпаянном из нерабочей материнки. Master

Ремонт бытовой техники своими руками

Можно ли собрать схему на более простых компонентах транзисторах? Так как LP это микромощный стабилизатор, ток до mA , то пришлось поэкспериментировать. Обязательно попробую скорее всего на выходных , надеюсь на успех!

Операционный усилитель U2B — усиливает напряжение, снимаемое с датчика тока. Доработка Фонарика vlad — Затем переменное напряжение после гасящего конденсатора выпрямляется диодным мостом на диодах VD1 — VD4 1N С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот.
ДЕЛАЕМ ПРОСТОЕ ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АКБ с авто выключением при полном заряде

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector