Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Алюминиевые сплавы

Алюминиевые сплавы

Алюми́ниевые спла́вы — сплавы, основной массовой частью которых является алюминий. Самыми распространенными легирующими элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Реже — цирконий, литий, бериллий, титан. В основном алюминиевые сплавы можно разделить на две основные группы: литейные сплавы и деформируемые (конструкционные). В свою очередь, конструкционные сплавы подразделяются на термически обработанные и термически необработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки [1] .

Содержание

Классификация [ править | править код ]

Приведена согласно национальным стандартам США (стандарт H35.1 ANSI) и ГОСТ России. В России основные стандарты это ГОСТ 1583 «Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS [en] маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.

Алюминиево-магниевые сплавы [ править | править код ]

  • Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг).

Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости [2] . Кроме того, эти сплавы отличаются высокой усталостной прочностью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система с атомным составом Al3Mg2 c твердым раствором магния в алюминии. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания магния в сплаве существенно увеличивает его прочность. Увеличение концентрации магния на каждый процент содержания повышает предел прочности сплава на

30 МПа [3] , а предел текучести — на

20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30—35 %.

Сплавы с содержанием магния до 3 % (по массе) не изменяют кристаллическую структуру при комнатной и повышенной температуре, даже в существенно нагартованном состоянии. С ростом концентрации магния в сплаве, в нагартованном состоянии механическая структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.

Для улучшения прочностных характеристик сплавы системы Al—Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Примеси в сплавы этой системы меди и железа нежелательны, поскольку они снижают их коррозионную стойкость и свариваемость.

Алюминиево-марганцевые сплавы [ править | править код ]

  • Алюминиево-марганцевые Al—Mn (ANSI: серия 3ххх; ГОСТ: АМц).

Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al—Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.

Легирование достаточным [ каким? ] количеством марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

Алюминиево-медные сплавы [ править | править код ]

  • Алюминиево-медные Al—Cu (Al—Cu—Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ).

Механические свойства сплавов этой системы в термоупрочнённом состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы хорошо поддаются механической обработке. Их существенный недостаток — низкая коррозионная стойкость, поэтому необходимо использовать поверхностные защитные покрытия.

В качестве легирующих добавок используются марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает магний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов.

Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

Сплавы алюминий-медь-кремний [ править | править код ]

  • Сплавы системы Al—Cu—Si (ГОСТ: АМК).

Алюминиевые антифрикционные сплавы, называемые также алькусинами (также: аэрон). Применяется во втулочных подшипниках [4] , а также при изготовлении блоков цилиндров с формообразованием в т.ч. литьём [5] . Имеют высокую твёрдость поверхности, поэтому плохо прирабатываются.

Сплавы алюминий-цинк-магний [ править | править код ]

  • Сплавы системы Al—Zn—Mg (Al—Zn—Mg—Cu) (ANSI: серия 7ххх, 7xx.x).

Сплавы этой системы имеют достаточно высокую прочность и хорошую обрабатываемость. Типичные сплавы этой системы — сплавы В95 (в США сплав 7075) относятся к высокопрочным алюминиевым сплавам. Эффект высокого упрочнения обусловлен высокой растворимостью цинка (до 70 %) и магния (до 17,4 %) при температуре плавления сплава, но растворимость резко уменьшается при охлаждении.

Существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под воздействием механического напряжения. Повышение коррозионной стойкости сплавов под напряжением достигается легированием медью.

В 1960-е годы была обнаружена закономерность: легирование литием алюминиевых сплавов замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает плотность сплава и существенно повышает его модуль упругости [6] . На основе этого открытия [ какого? ] были разработаны новые системы сплавов Al—Mg—Li, Al—Cu—Li и Al—Mg—Cu—Li.

Алюминий-кремниевые сплавы (силумины) [ править | править код ]

  • Алюминиево-кремниевые сплавы (силумины) — группа литейных сплавов. Имеют малую усадку при кристаллизации расплава. Применяются для отливок корпусов разных механизмов, корпусов приборов, деталей бытовых приборов, декоративного литья.

Другие сплавы [ править | править код ]

  • Комплексные сплавы на основе алюминия: авиаль.

Новые композитные сплавы алюминия [ править | править код ]

В 2019 году российские учёные из Национального исследовательского технологического университета МИСиС создали новый уникально прочный композит алюминий-никель-лантан. В расплав алюминия добавлялись легирующие элементы, образующие с алюминием химические соединения, которые в процессе затвердевания сплава дают прочный армирующий каркас. Наилучшие результаты по прочности в сочетании с лёгкостью и гибкостью показали Al-La-Ni сплавы с содержанием La до 8% масс и содержанием Ni до 5% масс [7] . Согласно микроисследованиям, сплав состоит из первичных кристаллов Al и сверхтонкой тройной эвтектики (толщина частиц около 30–70 нм), состоящей из бинарных соединений Al3Ni и Al4La. Испытание на одноосное растяжение перспективного сплава Al7La4Ni в литом состоянии показало предел прочности при растяжении около 250±10 МПа, предел текучести 200±10 МПа и пластичность 3,0±0,2% [7] . Благодаря естественной кристаллизации, частицы распределяются равномерно, создавая армирующий каркас, и композит получается более прочным и гибким, чем его «порошковые» аналоги. Новый сплав очень перспективен для использования в области авиа- и автомобилестроения, для проектирования современной робототехники, в том числе беспилотных летательных аппаратов, где снижение массы дрона имеет критическое значение. Показатели сплава превышают другие алюмоматричные композиты. [8]

Маркировка по ГОСТ [ править | править код ]

Принята буквенно-цифровая система маркировки. Буква, стоящая в начале, означает:
А — технический алюминий;
Д — дюралюминий;
АК — алюминиевый сплав, ковкий;
АВ — авиаль;
В — высокопрочный алюминиевый сплав;
АЛ — литейный алюминиевый сплав;
АМг — алюминиево-магниевый сплав;
АМц — алюминиево-марганцевый сплав;
САП — спечённые алюминиевые порошки;
САС — спечённые алюминиевые сплавы.

Читайте так же:
Биты для шуруповерта фото

Вслед за буквами идёт номер марки сплава. За номером марки сплава ставится буква, обозначающая состояние сплава:
М — сплав после отжига (мягкий);
Т — после закалки и естественного старения;
А — плакированный (нанесён чистый слой алюминия);
Н — нагартованный;
П — полунагартованный.

Термическая обработка [ править | править код ]

Применяют: отжиг, закалку, старение.

Отжиг существует 3-х типов:

  • диффузионный (гомогенизация);
  • рекристаллизационный;
  • отжиг термически упрочняемых сплавов.

Гомогенизация выравнивает химическую микронеоднородность зёрен путём диффузии (уменьшение дендритной ликвации).

Рекристаллизационный отжиг восстанавливает пластичность после обработки давлением.

Отжиг термически упрочняемых сплавов полностью снимает упрочнение.

Химический состав [ править | править код ]

В соответствии с ГОСТ [9] соотношение кремния и железа в алюминиевых сплавах должно быть менее единицы.

Алюминиевые сплавы
МаркаМассовая доля элементов, %Плотность, кг/дм³
ГОСТISO
209-1-89
Кремний (Si)Железо (Fe)Медь (Cu)Марганец (Mn)Магний (Mg)Хром (Cr)Цинк (Zn)Титан (Ti)ДругиеАлюминий
не менее
КаждыйСумма
АД000A199,8
1080A
0,150,150,030,020,020,060,020,0299,82,7
АД00
1010
A199,7
1070A
0,20,250,030,030,030,070,030,0399,72,7
АД00Е
1010Е
ЕА199,7
1370
0,10,250,020,010,020,010,04Бор:0,02
Ванадий+титан:0,02
0,199,72,7

Интересные факты [ править | править код ]

С 1997 по 2017 годы Министерство энергетики РФ запрещало использование алюминиевых сплавов в электропроводке зданий и сооружений. [ источник не указан 514 дней ]

Литейные сплавы алюминий-цинк-магний

Алюминиевые сплавы

Алюминиевые сплавы используются гораздо чаще, чем этот же металл в чистом виде. И тут ничего удивительного: они обладают гораздо большей прочностью, а также устойчивостью к коррозии и высоким температурам.

Комбинации с различными веществами наделяют те или иные сплавы конкретными характеристиками. В зависимости от требований к конечному продукту в алюминий добавляется один или несколько легирующих элементов. А чтобы не возникло путаницы, получившийся сплав маркируют определенным образом. То есть заказчику остается лишь выбрать наиболее подходящий для своих нужд металл.

Краткая характеристика алюминия и его сплавов

Впервые алюминий был получен учеными-химиками из Дании (Эрстедом) и Германии (Велером) в 1825 и 1827 годах соответственно. В промышленных масштабах производить металл стало возможным в 1886 году благодаря разработкам американца Чарльза Холла и француза Поля Эру. Стоимость алюминия вплоть до конца XIX века лишь ненамного уступала золоту.

В начале прошлого столетия алюминий использовался только в чистом виде. В 1906 году немецкий ученый Вильм термически упрочнил металл, добавив к нему медь (4 %), магний (0,5 %), марганец (0,5 %). Так появился первый сплав – дуралюмин. Алюминиевые сплавы, обладающие, помимо высокой прочности, небольшой плотностью, широко применяются в промышленности в настоящее время.

Классификация алюминиевых сплавов

Удельная прочность соединений алюминия (отношение временного сопротивления к плотности) значительно выше аналогичного параметра сталей. Благодаря этому алюминиевые соединения широко используются в ракето- и самолетостроении.

Для металла и его сплавов характерны высокая технологичность и простота деформации, что позволяет с легкостью создавать детали сложной конфигурации. К достоинствам материала относятся также устойчивость к коррозии и хорошая электропроводность (эта характеристика выше только у серебра, меди и золота). Применение сплавов алюминия в электронике и электротехнике обусловлено легкостью их раскатывания в фольгу.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

Благодаря низкой температуре плавления при обработке материала не требуются значительные энергетические затраты, соответственно, производство и продукция обладают невысокой себестоимостью.

Алюминий и магний 2021

Что такое алюминий и магний? Алюминий против магния

алюминий

Алюминиевое слово было получено после того, как квасцы назывались латинскими буквами. Металл был обнаружен Хамфри Дэви, химиком в 1808 году. Алюминий — беловатый серебристый, пластичный и немагнитный металл, присутствующий в изобилии и способствующий примерно 8% земной массы. Он довольно прочный, легкий по весу, а его символ — Al. Алюминий является ключевым металлом, используемым для различных технических продуктов; автомобили, поезда, самолеты, бытовая техника, части компьютерного оборудования, твердое ракетное топливо, ходовые столбы, термит, монеты в таких странах, как Румыния, Финляндия, Франция и Италия, строительство, краски, упаковка, полки в холодильнике и современные интерьеры. Этот металл был обнаружен около 200 лет назад. Наиболее выгодными соединениями алюминия являются оксиды и сульфаты. Алюминий никогда не встречается в элементарном состоянии.

Алюминиевый металл имеет более низкую плотность, очень мягкий, но обладает сильной податливостью. Он также обладает очень хорошей тепловой и электрической проводимостью. Алюминиевый металл можно легко перерабатывать. Различные соединения алюминия включают галогениды, оксиды и гидроксиды, карбид, нитрит, соединения органоалюминия. Все соединения алюминия бесцветны.

Алюминий связан со здоровьем. У людей токсичность алюминия может вызвать гематоэнцефалический барьер. Алюминий не так токсичен, как другие тяжелые металлы, но небольшое количество токсичности может быть вызвано, если оно потребляется более 40 мг / кг тела в день. Хотя алюминий хорошо переносится растениями. Алюминий в его металлической форме в основном производится из бокситов (AlOx (OH) 3-2x).

магниевый

Магний — самый легкий металл, найденный в мире, имеющий блестящий серый цвет с символом Mg. Это второй по численности металл, найденный в земной коре. Это примерно на тридцать четыре процента легче по объему, чем алюминий. Магний был обнаружен Джозефом Блэком в Эдинбурге в 1755 году. Магний также является обильным металлом, присутствующим в массе Земли, но он не встречается не в совокупности по своей природе. Магнезит и доломит являются минералами, которые содержат большое количество магния. В наших океанах есть триллионы тонн магния, присутствующих в них, и именно по этой причине океаны являются крупнейшим источником магния, из которых ежегодно производится 850 000 тонн.

Магний — полезный металл для производства легких изделий, таких как автомобильные сиденья, ноутбуки, сумки для багажа, камеры и электроприборы. Магний смешивается в расплавленном железе, а также для удаления серы. Магний довольно горючий, и именно по этой причине он используется во вспышках, фейерверках и бликах.
Сульфат магния используется в качестве объединяющего агента для фиксации красителей. Гидроксид магния действует как ан
ru.esdifferent.com

Классификация алюминиевых сплавов

Для классификации алюминиевых сплавов используется большое количество различных признаков. В зависимости от типа вспомогательных элементов выделяют следующие виды:

  • с добавлением присадок, в качестве которых выступают различные материалы, например, магний, цинк, хром, кремний и другие.
  • с добавлением интерметаллидов – в составе таких соединений присутствует несколько металлов, например, медь и магний, литий и магний.
Читайте так же:
65Х13 или 95х18 что лучше для ножа

В составе алюминиевых сплавов может присутствовать множество элементов, придающих материалу те или иные эксплуатационные характеристики.

По способу металлообработки выделяют следующие типы соединений алюминия:

  • Деформируемые алюминиевые сплавы – твердые соединения, которые благодаря высокой пластичности могут обрабатываться прессованием или ковкой. Эксплуатационные характеристики материала повышаются путем проведения дополнительной обработки.
  • Литейные – поступая на производство в жидком состоянии, они обрабатываются после того как затвердеют. Из литейных алюминиевых сплавов изготавливают корпусные детали различной конфигурации.

4 способа обработки алюминиевых сплавов

Отдельная группа представлена техническим алюминием, содержащим меньше 1 % посторонних примесей. Такой состав приводит к образованию на поверхности металла оксидной пленки, защищающей его от негативного воздействия окружающей среды. В то же время прочностные характеристики технического алюминия довольно низкие.

В зависимости от прочности соединения бывают:

  • сверхпрочными (от 480 МПа);
  • среднепрочными (от 300–480 МПа);
  • малопрочными (до 300 МПа);

Отдельная группа представлена дуралюминами, обладающими особыми эксплуатационными свойствами.

Выплавка Виды и свойства алюминиевых сплавов

Маркировка алюминиевых сплавов

При определении марки алюминиевых сплавов можно столкнуться с определенными сложностями. Маркировка выполняется таким образом, чтобы вопросов при уточнении соединения не возникало. Составы имеют определенное буквенно-цифровое обозначение.

Особенности маркировки заключаются в следующем:

  • в начале стоят одна или несколько букв, указывающие на состав соединения;
  • маркировки включают в себя цифровой порядковый номер;
  • заканчиваться маркировка может также буквой, обозначающей особенности обработки материала (например, термической).

Ознакомимся с правилами маркировки на примере сплава Д17П. Первая буква Д обозначает состав сплава – дюралюминий. В составе всех дюралюминиев присутствуют определенные химические элементы, различающиеся по количественному содержанию. Порядковый номер 17 указывает на конкретный материал, обладающий определенными свойствами. Буква П в конце маркировки используется для обозначения способа обработки полунагартованного соединения, получаемого под давлением без предварительного нагрева металла, соответственно, прочностные характеристики будут составлять половину от максимально возможных.

Маркировка алюминиевых сплавов производится по ГОСТу 4784-97, определяющему основные требования к обозначению соединений.

Основные группы алюминиевых сплавов и их свойства

Основные группы алюминиевых сплавов и их свойства

Для работы с алюминием и его соединениями необходимо ознакомиться со свойствами металла, поскольку они существенно влияют на сферу применения деталей и характеристики материала. Ранее мы говорили о классификации сплавов алюминия.

Далее расскажем о наиболее распространенных типах металла и их свойствах.

  • Сплавы с алюминием, медью и кремнием.

Соединение также известно под названием алькусин. Сплавы, в которых присутствуют медь и кремний, используются для изготовления деталей промышленного оборудования. Отличные технические свойства позволяют эксплуатировать их в условиях постоянной нагрузки.

  • Алюминиево-медные сплавы.

Технические характеристики составов, в которых присутствует медь, сравнимы с низкоуглеродистыми сталями. Основной недостаток заключается в плохой коррозионной устойчивости. Детали покрываются защитным составом, предохраняющим от негативного воздействия окружающей среды. Для улучшения качеств материала используют легирующие компоненты (марганец, железо, магний и кремний).

Алюминиево-медные сплавы

  • Алюминиево-кремниевые сплавы.

Эти соединения носят название силумина и служат для производства декоративных элементов. Для повышения характеристик алюминиевых сплавов используют натрий и литий.

  • Алюминиево-магниевые сплавы.

Присутствие в составе магния повышает прочностные характеристики материала, а также облегчает процесс сварки. Содержание магния не должно превышать 6 %. Более высокий процент снизит антикоррозионные свойства соединения. Для повышения прочности без снижения коррозионной устойчивости в составы добавляют марганец, ванадий, хром или кремний. Каждый дополнительный процент магния улучшает прочность на 30 МПа.

  • Алюминиево-марганцевые сплавы.

Для повышения устойчивости к коррозии в состав соединения добавляют марганец. Благодаря ему повышаются прочность и свариваемость материала. Кроме марганца в состав добавляют железо и кремний.

  • Сплавы с алюминием, цинком и магнием.

Высокими прочностными характеристиками, а также простотой обработки отличаются алюминиевые сплавы с магнием и цинком. Для улучшения свойств материала его подвергают термической обработке. Недостатком таких соединений является низкая антикоррозионная устойчивость. Для исправления этого минуса используют легирующий компонент – медь.

  • Авиаль.

В этих сплавах, помимо алюминия, содержатся магний и кремний. Соединения отличаются высокой пластичностью, коррозионной устойчивостью.

Сплавы алюминия с другими элементами

Алюминиевые литейные сплавы серии 7хх.х

По американской классификации эти сплавы относятся к серии 7хх.х. Они имеют прочностные свойства от средних до высоких. Путем отжига обеспечивается хорошая стабильность размеров. Эвтектическая точка сплавов этой группы является высокой, что благоприятно для деталей, которые подвергаются пайке. Эти сплавы имеют хорошую механическую обрабатываемость. Для них характерна высокая коррозионная стойкость при некоторой склонности к коррозии под напряжением. Их не рекомендуют для применения при повышенных температурах. Прочностные свойства этих сплавов повышаются при комнатной в течение нескольких недель после разливки в результате упрочнения по механизму выделения вторичной фазы. Этот процесс продолжается и после нескольких недель, но уже с уменьшающейся скоростью. К сплавам 707.0, 771.0 и 772.0 могут применяться термические обработки типа Т6 и Т7.

Сплавы алюминия с другими элементами

Легирующими элементами, используемыми при изготовлении алюминиевых сплавов и улучшающими их качественные характеристики, являются также следующие.

Бериллий уменьшает окисление при термической обработке. Невысокое содержание бериллия (0,01–0,05 %) улучшает текучесть соединений алюминия, используемых в процессе производства деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Висмут, а также свинец, олово или кадмий, обладающие низкой температурой плавления, при добавлении в состав сплавов облегчают процесс резки металла. Эти компоненты способствуют образованию мягких легкоплавких фаз, обеспечивающих ломкость стружки и смазывание резца.

Соединения с добавлением галлия (0,01–0,1 %) используются для производства расходуемых анодов.

Небольшое количество железа (не более 0,04 %) добавляют в материал, используемый для изготовления проводов, за счет этого повышается прочность и ползучесть материала. Кроме того, железо снижает прилипание состава к стенкам форм при литье в кокиль.

Магний и его сплавы

обработка магниевых сплавов Алюминиевые сплавы магниевые сплавы

Промышленное производство и использование магния началось сравнительно недавно – всего около 100 лет назад. Этот металл имеет малую массу, так как обладает сравнительно низкой плотностью (1,74 г/смᶟ), хорошую устойчивость в воздухе, щелочах, газовых средах с содержанием фтора и в минеральных маслах.

Температура его плавления составляет 650 градусов. Он характеризуется высокой химической активностью вплоть до самопроизвольного возгорания на воздухе. Предел прочности чистого магния составляет 190 Мпа, модуль упругости – 4 500 Мпа, относительное удлинение – 18%. Металл отличается высокой демпфирующей способностью (эффективно поглощает упругие колебания), что обеспечивает ему отличную переносимость ударных нагрузок и снижение чувствительности к резонансным явлениям.

К числу прочих особенностей данного элемента относятся хорошая теплопроводность, низкая способность поглощать тепловые нейтроны и взаимодействовать с ядерным топливом. Благодаря совокупности этих свойств магний является идеальным материалом для создания герметичных оболочек высокотемпературных элементов ядерных реакторов.

Читайте так же:
Двигатель для компрессора 380 вольт

Магний хорошо сплавляется с разными металлами и относится к числу сильных восстановителей, без которых невозможен процесс металлотермии.

В чистом виде он в основном применяется как легирующая добавка в сплавах с алюминием, титаном и некоторыми другими химическими элементами. В черной металлургии с помощью магния проводится глубокая десульфурация стали и чугуна, а также улучшаются свойства последнего посредством сфероидизации графита.

Магний и легирующие добавки

К числу наиболее распространенных легирующих добавок, применяемых в сплавах на основе магния, относятся такие элементы, как алюминий, марганец и цинк. Посредством алюминия улучшается структура, повышается жидкотекучесть и прочность материала. Введение цинка также позволяет получать более прочные сплавы с уменьшенным размером зерен. С помощью марганца или циркония увеличивается коррозионная стойкость магниевых сплавов.

обработка магниевых сплавов

Добавление цинка и циркония обеспечивает повышенную прочность и пластичность металлосмесей. А наличие определенных редкоземельных элементов, например, неодима, церия, иттрия и пр., способствует значительному увеличению жаропрочности и максимизации механических свойств магниевых сплавов.

Для создания сверхлегких материалов с плотностью от 1,3 до 1,6 г/мᶟ в сплавы вводится литий. Данная добавка позволяет уменьшить их массу вдвое по сравнению с алюминиевыми металлосмесями. При этом их показатели пластичности, текучести, упругости и технологичности выходят на более высокий уровень.

Виды и свойства алюминиевых сплавов

Работая с этим металлом и смесями на его основе, важно знать свойства алюминиевых сплавов. От этого будет зависеть область применения материала и его характеристики. Классификация алюминиевых сплавов приведена выше. Ниже будут описаны самые популярные виды сплавов и их свойства.

Алюминиево-магниевые сплавы

Сплавы алюминия с магнием обладают высоким показателем прочности и хорошо поддаются сварке. Дополнительного компонента в состав не добавляют более 6%. В противном случае ухудшается устойчивость материала к коррозийным процессам. Чтобы дополнительно увеличить показатель прочности без ущерба защите от коррозии, алюминиевые сплавы разбавляются марганцем, ванадием, хромом или кремнием. От каждого процента магния, добавленного в состав, показатель прочности изменяется на 30 Мпа.

Алюминиево-марганцевые сплавы

Чтобы увеличить показатель коррозийной устойчивости, алюминиевый сплав разбавляется марганцем. Этот компонент дополнительно увеличивает прочность изделия и показатель свариваемости. Компоненты, которые могут добавляться в такие составы — железо и кремний.

Сплавы с алюминием, медью и кремнием

Второе название этого материала — алькусин. Марки алюминия с добавлением меди и кремния идут на производство деталей для промышленного оборудования. Благодаря высоким техническим характеристикам они выдерживают постоянные нагрузки.

Алюминиево-медные сплавы

Смеси меди с алюминием по техническим характеристикам можно сравнить с низкоуглеродистыми сталями. Главный минус этого материала — подверженность к развитию коррозийных процессов. На детали наносится защитное покрытие, которое сохраняет их от воздействия факторов окружающей среды. Состав алюминия и меди улучшают с помощью легирующий добавок. Ими является марганец, железо, магний и кремний.

Алюминиево-медные сплавы

Алюминиево-медные сплавы

Алюминиево-кремниевые сплавы

Называются такие смеси силумином. Дополнительно эти сплавы улучшаются с помощью натрия и лития. Чаще всего, силумин используется для изготовления декоративных изделий.

Сплавы с алюминием, цинком и магнием

Сплавы на основе алюминия, в которые добавляется магний и цинк, легко обрабатываются и имеют высокий показатель прочности. Увеличить характеристики материала можно проведя термическую обработку. Недостаток смеси трёх металлов — низкая коррозийная устойчивость. Исправить этот недостаток можно с помощью легирующей медной примеси.

Авиаль

В состав этих сплавов входит алюминий, магний и кремний. Отличительные особенности — высокий показатель пластичности, хорошая устойчивость к коррозийным процессам.

Литейные сплавы

К этой группе относятся сплавы с добавлением магния, предназначенные для производства разнообразных деталей и элементов методом фасонного литья. Они обладают разными механическими свойствами, в зависимости от которых делятся на три класса:

  • среднепрочные;
  • высокопрочные;
  • жаропрочные.

По химическому составу сплавы также подразделяются на три группы:

  • алюминий + магний + цинк;
  • магний + цинк + цирконий;
  • магний + редкоземельные элементы + цирконий.

Классификация и маркировка сплавов магния

Классификация основных сплавов магния приведена на рис. 3.5 Эта классификация практически полностью отражает все группы сплавов магния, используемых в настоящее время.

Рис.3.5. Классификация сплавов на основе магния

Чистый магний из-за низких механических свойств как конструкционный материал практически не применяют. В зависимости от чистоты его используют в пиротехнике, в химической промышленности (как катализатор), в металлургии различных металлов и сплавов (как раскислитель, восстановитель и легирующий элемент).

Суммарное число контролируемых примесей (fe, Si, Ni, cu) определяет марку магния [19]. Маркируют технический магний двубуквенным символом Мг, затем идет цифра, указывающая содержание магния с точностью до сотых долей процента. Например, магний марки Мг96 содержит магния 99,96%, а остальное – контролируемые примеси. Для промышленности установлены следующие марки магния: Мг96, Мг95, Мг90. В определенных случаях используют особо чистый магний марки Мг9999.

Основными легирующими элементами магниевых сплавов являются Al, Zn, и Mn. Однако они в маркировке не отражаются и все магниевые сплавы маркируют буквой М. За ней ставиться буква А или Л в зависимости от принадлежности сплава к деформируемым или литейным. Далее без пропуска следует цифра, обозначающая порядковый номер сплава.

Литейные свойства сплавов

Наилучшими литейными свойствами среди продуктов этих трех групп обладают алюминий-магниевые сплавы. Они относятся к классу высокопрочных материалов (до 220 МПа), поэтому являются оптимальным вариантом для изготовления деталей двигателей самолетов, автомобилей и другой техники, работающей в условиях механических и температурных нагрузок.

Для повышения прочностных характеристик алюминиево-магниевые сплавы легируют и другими элементами. А вот присутствие примесей железа и меди нежелательно, так как эти элементы оказывают отрицательное влияние на свариваемость и коррозионную стойкость сплавов.

Литейные магниевые сплавы приготавливаются в различных типах плавильных печей: в отражательных, в тигельных с газовым, нефтяным либо электрическим нагревом или в тигельных индукционных установках.

Для предотвращения горения в процессе плавки и при литье используются специальные флюсы и присадки. Отливки получают путем литья в песчаные, гипсовые и оболочковые формы, под давлением и с использованием выплавляемых моделей.

Алюминиево-медные системы

В термоупрочненном состоянии демонстрируют хорошие механические свойства, но подвержены коррозии. Требуется дополнительная поверхностная обработка металлоизделий для повышения коррозионной стойкости. Систему АL-Cu дополнительно легируют:

  • марганцем, он снижает химическую активность;
  • кремнием, компонент влияет на точку эвтектики – равновесия жидкой и твердой фаз;
  • железом для улучшения прочностных свойств, снижение пластичности и коррозионной устойчивости компенсируется никелем;
  • никель в сочетании с железом повышают жаропрочность, улучшают их способность к старению.
  • медь улучшает способность к деформации и упрочнению полуфабрикатов и готовых изделий при низких температурах. Сплавы АL-Cu-Si (алькусины) обладают антифрикционными свойствами, используются при изготовлении деталей двигателей, трансмиссии, ходовой части машин.
Читайте так же:
Ручная пила для мяса и костей электрическая

Деформируемые сплавы

По сравнению с литейными, деформируемые магниевые сплавы отличаются большей прочностью, пластичностью и вязкостью. Они используются для производства заготовок методами прокатки, прессования и штамповки. В качестве термической обработки изделий применяется закалка при температуре 350-410 градусов с последующим произвольным охлаждением без старения.

При нагреве пластические свойства таких материалов возрастают, поэтому обработка магниевых сплавов осуществляется посредством давления и при высоких температурах. Штамповка выполняется при 280-480 градусах под прессами посредством закрытых штампов. При холодной прокатке проводятся частые промежуточные рекристаллизационные отжиги.

При сварке магниевых сплавов прочность шва изделия может быть снижена на отрезках, где выполнялась подварка, из-за чувствительности таких материалов к перегреву.

Свойства и влияние легирующих компонентов

Магний как металл обладает негативных для его промышленного применения свойств: пониженной коррозионной устойчивостью и воспламеняемостью при температурах выше 400 ºС. Для снижения этих негативных свойств, а также для улучшения технологических показателей в магний вводят легирующие добавки.

Введение легирующих добавок следующим образом изменяет свойства магния:

  • алюминий – улучшает внутреннюю структуру отливок, повышает прочность, увеличивает жидкотекучесть;
  • цинк – уменьшает зернистость, повышает прочность;
  • марганец – значительно увеличивает коррозионную устойчивость магниевых сплавов, повышает прочность;
  • цирконий – уменьшает зернистость, повышает прочность, увеличивает пластичность; — редкоземельные элементы (неодим, иттрий, церий), лантан, торий – усиливают жаропрочность, улучшают механические свойства;
  • литий – значительно снижает плотность, увеличивает пластичность, увеличивает предел текучести, улучшает показатели при обработке магниевого сплава давлением, повышает устойчивость к криогенным температурам, повышает показатели ударной вязкости, улучшает показатели свариваемости.

Вредные для магниевых сплавов примеси снижают коррозионную устойчивость и ухудшают растворимость легирующих добавок. Ко вредным примесям относятся:

Сферы применения сплавов с добавления магния

магниевые сплавы применение

Посредством методов литья, деформации и термической обработки сплавов изготавливаются различные полуфабрикаты – слитки, плиты, профили, листы, поковки и т.д. Эти заготовки используются для производства элементов и деталей современных технических устройств, где приоритетную роль играет весовая эффективность конструкций (сниженная масса) при сохранении их прочностных характеристик. По сравнению с алюминием магний легче в 1,5 раза, а со сталью – в 4,5.

В настоящее время применение магниевых сплавов широко практикуется в авиакосмической, автомобилестроительной, военной и прочих отраслях, где их высокая стоимость (некоторые марки содержат в своем составе достаточно дорогостоящие легирующие элементы) оправдывается с экономической точки зрения возможностью создания более долговечной, быстрой, мощной и безопасной техники, которая сможет эффективно работать в экстремальных условиях, в том числе и при воздействии высоких температур.

литейные магниевые сплавы

Благодаря высокому электрическому потенциалу эти сплавы являются оптимальным материалом для создания протекторов, обеспечивающих электрохимическую защиту стальных конструкций, например, деталей автомобилей, подземных сооружений, нефтяных платформ, морских судов и т.д., от коррозионных процессов, происходящих под воздействием влаги, пресной и морской воды.

Нашли применение сплавы с добавлением магния и в разных радиотехнических системах, где из них изготавливают звукопроводы ультразвуковых линий для задержки электросигналов.

Магниевые сплавы: применение, классификация и свойства

сплав магния Алюминиевые сплавы магниевые сплавы

Промышленное производство и использование магния началось сравнительно недавно – всего около 100 лет назад. Этот металл имеет малую массу, так как обладает сравнительно низкой плотностью (1,74 г/смᶟ), хорошую устойчивость в воздухе, щелочах, газовых средах с содержанием фтора и в минеральных маслах.

Температура его плавления составляет 650 градусов. Он характеризуется высокой химической активностью вплоть до самопроизвольного возгорания на воздухе. Предел прочности чистого магния составляет 190 Мпа, модуль упругости – 4 500 Мпа, относительное удлинение – 18%. Металл отличается высокой демпфирующей способностью (эффективно поглощает упругие колебания), что обеспечивает ему отличную переносимость ударных нагрузок и снижение чувствительности к резонансным явлениям.

К числу прочих особенностей данного элемента относятся хорошая теплопроводность, низкая способность поглощать тепловые нейтроны и взаимодействовать с ядерным топливом. Благодаря совокупности этих свойств магний является идеальным материалом для создания герметичных оболочек высокотемпературных элементов ядерных реакторов.

Магний хорошо сплавляется с разными металлами и относится к числу сильных восстановителей, без которых невозможен процесс металлотермии.

В чистом виде он в основном применяется как легирующая добавка в сплавах с алюминием, титаном и некоторыми другими химическими элементами. В черной металлургии с помощью магния проводится глубокая десульфурация стали и чугуна, а также улучшаются свойства последнего посредством сфероидизации графита.

Алюминиево-медные сплавы Магний Сварка магниевых сплавов

Магний и легирующие добавки

К числу наиболее распространенных легирующих добавок, применяемых в сплавах на основе магния, относятся такие элементы, как алюминий, марганец и цинк. Посредством алюминия улучшается структура, повышается жидкотекучесть и прочность материала. Введение цинка также позволяет получать более прочные сплавы с уменьшенным размером зерен. С помощью марганца или циркония увеличивается коррозионная стойкость магниевых сплавов.

обработка магниевых сплавов

Добавление цинка и циркония обеспечивает повышенную прочность и пластичность металлосмесей. А наличие определенных редкоземельных элементов, например, неодима, церия, иттрия и пр., способствует значительному увеличению жаропрочности и максимизации механических свойств магниевых сплавов.

Для создания сверхлегких материалов с плотностью от 1,3 до 1,6 г/мᶟ в сплавы вводится литий. Данная добавка позволяет уменьшить их массу вдвое по сравнению с алюминиевыми металлосмесями. При этом их показатели пластичности, текучести, упругости и технологичности выходят на более высокий уровень.

Обозначение состояния металла

Алюминиевые деформируются сплавы маркируются по виду обработки. «Н» обозначает, что алюминий нагартованный. Возможные структурные состояния алюминия, указанные в обозначениях марки:

«Н1» – металл подвергался только нагортовке;

«Н2» – помимо пластической деформации производился частичный отжиг;

«Н3» – после нагортовки алюминий стабилизировали для снятия внутренних напряжений (нагрели до средних температур и медленно охладили);

«Н4» – технологией предусмотрено лакокрасочное покрытие нагартованного металла

«П» – полунагартованный сплав

«Н» –полностью нагартованный алюминий.

Существует и другая градация степени нагартовки: на ¼, ¾, сверхполной. От степени нагартовки зависит прочность алюминиевого деформируемого сплава. Нагортовка применяется, когда нет возможности другими способами упрочнить алюминий. В процессе холодной деформации повышается устойчивость к растрескиванию, предотвращается усталостное разрушение материала.

«Т» в марке говорит о термическом упрочнении металла:

закалке, нагреве до температуры +500°С с последующим охлаждением в воде;

старении, естественное производят в течение 5–7 суток при комнатной температуре, для искусственного металл нагревают, время старения сокращается.

Читайте так же:
Чем микросхема lm358 отличается от lm358n

Указывают одно из 10 базовых состояний от «Т1» до «Т10». Дополнительно маркируется форма снятия остаточных напряжений: методом сжатия или растяжения.

Отожженные изделия из алюминиевых деформируемых сплавов в марке имеют букву «М». Они обладают повышенной пластичностью. Степень отжига не градируется.

Литейные сплавы

К этой группе относятся сплавы с добавлением магния, предназначенные для производства разнообразных деталей и элементов методом фасонного литья. Они обладают разными механическими свойствами, в зависимости от которых делятся на три класса:

  • среднепрочные;
  • высокопрочные;
  • жаропрочные.

По химическому составу сплавы также подразделяются на три группы:

  • алюминий + магний + цинк;
  • магний + цинк + цирконий;
  • магний + редкоземельные элементы + цирконий.

Маркировка

На изделиях из алюминиевых деформируемых сплавов бывает маркировка двух видов:

  • буквенно-цифровая (указывается название сплава и его марка);
  • цифровая из четырех символов.

Дополнительно наносится маркировка технологической обработки.

САП, САС – спеченные из порошков металлы. А – технический алюминий, градируется по чистоте сплава. АК, АВ, В, АМг, АМц – термические упрочняемые марки, соответствующие по компонентному составу ГОСТ 4784-97.

Литейные свойства сплавов

Наилучшими литейными свойствами среди продуктов этих трех групп обладают алюминий-магниевые сплавы. Они относятся к классу высокопрочных материалов (до 220 МПа), поэтому являются оптимальным вариантом для изготовления деталей двигателей самолетов, автомобилей и другой техники, работающей в условиях механических и температурных нагрузок.

Для повышения прочностных характеристик алюминиево-магниевые сплавы легируют и другими элементами. А вот присутствие примесей железа и меди нежелательно, так как эти элементы оказывают отрицательное влияние на свариваемость и коррозионную стойкость сплавов.

Литейные магниевые сплавы приготавливаются в различных типах плавильных печей: в отражательных, в тигельных с газовым, нефтяным либо электрическим нагревом или в тигельных индукционных установках.

Для предотвращения горения в процессе плавки и при литье используются специальные флюсы и присадки. Отливки получают путем литья в песчаные, гипсовые и оболочковые формы, под давлением и с использованием выплавляемых моделей.

Список использованной литературы

  1. Белоусов Н. Н. Плавка и разливка сплавов цветных металлов. — Л.: Машиностроение, 1981. – 80с.
  2. Воздвиженский В. М. Литейные сплавы и технология их выплавки в машиностроении. – М.: Машиностроение, 1984. – 432с.
  3. Липницкий А. М., Морозов И. В. Технология цветного литья. — Л.: Машгиз, 1986. – 224с.
  4. Сажин В. Б. Основы материаловедения. М.: ТЕИС, 2005. – 156 с.
  5. Уткин Н. И. Металлургия цветных металлов. – М.: Металлургия, 1985. – 440 с.
  6. Элвелл В. Т., Вуд Д. Ф. Анализ новых металлов. Пер. с англ. – М.: Химия, 1970. — 220 с.

Деформируемые сплавы

По сравнению с литейными, деформируемые магниевые сплавы отличаются большей прочностью, пластичностью и вязкостью. Они используются для производства заготовок методами прокатки, прессования и штамповки. В качестве термической обработки изделий применяется закалка при температуре 350-410 градусов с последующим произвольным охлаждением без старения.

При нагреве пластические свойства таких материалов возрастают, поэтому обработка магниевых сплавов осуществляется посредством давления и при высоких температурах. Штамповка выполняется при 280-480 градусах под прессами посредством закрытых штампов. При холодной прокатке проводятся частые промежуточные рекристаллизационные отжиги.

При сварке магниевых сплавов прочность шва изделия может быть снижена на отрезках, где выполнялась подварка, из-за чувствительности таких материалов к перегреву.

Спеченные порошки

Порошковые алюминиевые деформируемые сплавы выпускают двух видов:

САС – сплавляемые из пудры.

САП характеризуются высокой жаропрочностью, они превосходят технический алюминий, выносят длительный нагрев в диапазоне температур 300–500°С, кратковременный в пределах +1100°С.

Порошковые алюминиевые деформируемые сплавы получают путем спекания измельченного металлического алюминия и оксида AL2O3. Концентрация оксида градируется, в САП1 от 6 до 9%, в САП4 от 18 до 22%. Во время спекания на частицах алюминия образуется оксидная пленка. Такая структура обладает стойкостью к нагреванию, так как температура плавления оксида свыше +1300°С. Сплав характеризуется высокой прочностью в пределах от 320 до 460 МПа.

Брикетированные полуфабрикаты поддаются механической обработке, их используют при производстве сортового, профильного и фасонного проката.

При повышении концентрации оксида ухудшается способность к прокатке, штамповке, металл приходится нагревать свыше +500°С.

САС помимо алюминия и оксида содержат легирующие добавки: хром, кремний, никель, титан, цинк, натрий, магний и другие. Иногда компонентный состав полностью соответствует ГОСТ 4784-97, обладают схожими свойствами, но отличаются повышенной стабильностью при нагреве. Используются для производства деталей, испытывающих термическое напряжение. В отличие от литья, детали из порошковых алюминиевых деформируемых сплавов не содержат шлаковых включений, пленов, других дефектов, связанных с нагревом алюминия. Детали имеют гомогенную структуру, их нет необходимости подвергать отжигу.

Сферы применения сплавов с добавления магния

магниевые сплавы применение

Посредством методов литья, деформации и термической обработки сплавов изготавливаются различные полуфабрикаты – слитки, плиты, профили, листы, поковки и т.д. Эти заготовки используются для производства элементов и деталей современных технических устройств, где приоритетную роль играет весовая эффективность конструкций (сниженная масса) при сохранении их прочностных характеристик. По сравнению с алюминием магний легче в 1,5 раза, а со сталью – в 4,5.

В настоящее время применение магниевых сплавов широко практикуется в авиакосмической, автомобилестроительной, военной и прочих отраслях, где их высокая стоимость (некоторые марки содержат в своем составе достаточно дорогостоящие легирующие элементы) оправдывается с экономической точки зрения возможностью создания более долговечной, быстрой, мощной и безопасной техники, которая сможет эффективно работать в экстремальных условиях, в том числе и при воздействии высоких температур.

литейные магниевые сплавы

Благодаря высокому электрическому потенциалу эти сплавы являются оптимальным материалом для создания протекторов, обеспечивающих электрохимическую защиту стальных конструкций, например, деталей автомобилей, подземных сооружений, нефтяных платформ, морских судов и т.д., от коррозионных процессов, происходящих под воздействием влаги, пресной и морской воды.

Нашли применение сплавы с добавлением магния и в разных радиотехнических системах, где из них изготавливают звукопроводы ультразвуковых линий для задержки электросигналов.

Неупрочняемые

Гомогенные системы Al—Mg, обозначаемые «АМц» (алюминий, легированный магнием) и Al—Mn, маркированные «АМг» (легирующим компонентом является марганец). При нагревании в них укрупняется размер зерна, поэтому их упрочнят в холодном виде нагартовкой (метод холодной пластической деформации под ударной нагрузкой). Неупрочняемые алюминиевые деформируемые сплавы характеризуются:

  • повышенной пластичностью;
  • способностью деформироваться под давлением без разрывов;
  • хорошей свариваемостью;
  • устойчивостью к коррозионным разрушениям в условиях повышенной влажности.

Металл используют для производства полуфабрикатов, профиля и деталей для судостроения, нефтеперерабатывающей, химической промышленности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector