Alp22.ru

Промышленное строительство
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Учебные материалы

Качественные углеродистые стали

Помощь студентам

Качественные углеродистые стали маркируют цифрами, показывающими содержание углерода в сотых долях процента. В зависимости от содержания марганца стали делятся на две группы; с нормальным и с повышенным содержания марганца (до 1,2 %, в этом случае к маркировке стали добавляется буква <Г>).

Стали I группы: 08, 10, 15, 20, 25, 30…85.

Стали II группы: 15Г, 20Г, 25Г, 30Г, 35Г … 70Г.

Механические свойства некоторых углеродистых качественных конструкционных сталей приведены в таблице 9.

Таблица 9 — Механические свойства углеродистых качественных конструкционных сталей

МаркаВременное
сопротивление sв, МПа
Предел
текучести,
sт, МПа
Относительное
удлинение
d5, %
Относительное
сужение, y, %
не менее
08
10
20
30
45
60
85
30Г
60Г
330
340
420
500
610
690
1150
550
710
200
210
250
300
360
410
1000
320
420
33
31
25
21
16
12
6
20
11
60
55
55
50
40
35
30
45
35

Низкоуглеродистые стали

Низкоуглеродистые стали 08 и 10 применяют без термической обработки для малонагруженных деталей, тонколистовую сталь используют для холодной штамповки изделий. Сталь 10 применяется для изготовления элементов сварных конструкций, корпусов и трубных пучков теплообменных аппаратов, трубопроводов, змеевиков и других деталей, работающих от минус 40 до плюс 450 0 С, к которым предъявляются требования высокой пластичности.

Стали 15, 20, 25 чаще применяют без термической обработки или в нормализованном состоянии. Низкоуглеродистые качественные стали используют и для ответственных сварных конструкций, а также для деталей машин упрочняемых цементацией. Сталь 20 применяется для изготовления трубопроводов, змеевиков, труб перегревателей, трубных пучков теплообменных аппаратов, и других деталей, работающих от минус 40 до плюс 475 0 С.

Среднеуглеродистые стали

Среднеуглеродистые стали 30…55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях машиностроения. Прокаливаемость сталей невелика; критический диаметр после закалки в воде не превышает 10…12 мм. Для повышения прокаливаемости стали добавочно легируют марганцем (40Г, 50Г).

Высокоуглеродистые стали

Высокоуглеродистые стали 60…85 обладают повышенной прочностью, твердостью, износостойкостью и упругими свойствами. Их применяют после закалки и отпуска, нормализации для деталей, работающих в условиях трения при наличии высоких статических вибрационных нагрузок. Из этих сталей изготавливают пружины, рессоры, мембраны, шпиндели станков и т.д.

Для изготовления деталей и частей паровых котлов и сосудов, работающих под давлением не более 60 атм. и температуре не выше 450 0 С, промышленность выпускает листовую горячекатаную углеродистую сталь толщиной от 4 до 60 мм. Марки котельных сталей: 12К, 15К, 16К, 18К, 20К, 22К. Числа показывают среднее содержание углерода в сотых долях процента. Буква <К> указывает их основное назначение — котельные стали.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Максимальное содержание углерода в сталях

Углеродистой называют нелегированную сталь, содержащую 0,04…2% углерода. Кроме того, в состав такой стали входят постоянные примеси, неизбежно присутствующие в ней в связи с условиями производства: до 1% марганца, до 0,4 кремния, до 0,07 серы, до 0,09% фосфора.

Рис. 10. Схемы микроструктур стали в равновесном состоянии:
а — ферритной, б — ферритно-цементитной, в — ферритноперлит-ной, г — перлитной, д — перлитно-цементитной; 1 — феррит, 2 — цементит, 3— перлит

Структура и свойства углеродистой стали зависят от содержания углерода и скорости охлаждения. Медленно охлажденные стали характеризуются равновесными структурами, не изменяющимися при последующем нагреве вплоть до температуры 728 °С. Быстрое охлаждение приводит к образованию неравновесных структур, которые при последующем нагреве стремятся перейти в равновесные. Среди структурных составляющих медленно охлажденной стали выделяют феррит, цементит и перлит (рис. 10).

Феррит – твердый раствор углерода (до 0,02% ) в железе. По свойствам близок к чистому железу. Твердость феррита НВ60…80, предел прочности при растяжении 250 МПа. Феррит мягок и пластичен.

Цементит — карбид железа Fe3C — химическое соединение, содержащее 6,67% углерода. Характеризуется высокой твердостью (НВ700…800) и хрупкостью.

Читайте так же:
Клей для склеивания металла с деревом

Перлит — механическая смесь феррита и цементита. Вследствие упрочняющего влияния цементита перлит обладает более высокой прочностью и твердостью, чем феррит, но менее пластичен.

По мере возрастания количества углерода изменяются соотношения между отдельными структурными составляющими. Это сказывается на свойствах стали. При содержании углерода до 0,006% структура стали образована чистым ферритом (рис. 10,а). Прочность такой стали сравнительно невелика, зато она обладает высокой пластичностью и ударной вязкостью. Если количество углерода увеличить до 0,025%, появится новая структурная составляющая — цементит, который локализуется по границам зерен феррита (рис. 10,6). Хрупкая цементитная сетка снижает ударную вязкость стали. Структура стали с содержанием углерода более 0,025% представлена ферритом и перлитом, причем доля перлита тем больше, чем выше концентрация углерода (рис. 10,в). С повышением содержания перлита возрастают прочность и твердость стали, а относительное удлинение и ударная вязкость уменьшаются.

Структура стали, содержащей ровно 0,8% углерода, представлена только перлитом (рис. 10,г). Если концентрация углерода превышает 0,8%, в структуре появляется цементит, располагающийся по границам зерен пердита (рис. 10, д). При содержании углерода около 1% хрупкий цементит образует сетчатую структуру. Это снижает прочность стали и делает ее хрупкой.

Влияние состава и структуры на некоторые механические свойства стали графически изображено на рис. 11. С повышением концентрации углерода твердость стали закономерно возрастает, относительное удлинение уменьшается; прочность же возрастает до некоторого предела (0,8… 1%), а затем падает.

Значительное влияние на свойства стали оказывают примеси. Кремний и марганец увеличивают проч-стали относительно небольшое. Фосфор и сера — вредные примеси в стали при любой их концентрации. Сера снижает механические свойства и вызывает красноломкость стали. Фосфор значительно увеличивает хрупкость стали,особенно при отрицательной температуре (т. е. вызывает хладноломкость). Полное удаление из стали фосфора и серы сопряжено с большими затратами топлива и энергии, поэтому на практике ограничивают их содержание до безопасных пределов.

Углеродистые стали классифицируют по способу производства и назначению.

По способу производства различают мартеновскую, кислородно-конвертерную, бессемеровскую и электросталь.

По назначению углеродистые стали разделяют на конструкционные и инструментальные.

Конструкционные стали содержат углерода не более 0,65% . Их применяют для изготовления арматуры железобетонных конструкций. Используемые в строительстве конструкционные углеродистые стали подразделяют на стали обыкновенного качества, качественные и специальные.

Рис. 11. Графики зависимости механических свойств стали от содержания углерода:

Сталь углеродистая обыкновенного качества (ГОСТ 380—71*) подразделяют на группы А, Б, В, учитывающие условия поставки. Сталь группы А поставляют потребителям по механическим свойствам: пределам прочности и текучести, относительному удлинению, способности к изгибу в холодном состоянии. В стали группы Б нормируют химический состав, а группы В — одновременно химический состав и механические свойства.

Каждая группа включает несколько марок стали— от Ст0 до Ст6. С увеличением номера возрастает прочность стали и уменьшается ее пластичность. Сталь марок от Ст1 до Ст4 выпускают кипящей, полуспокойной, спокойной, марок Ст5 и Стб — полуспокойной и спокойной. Указание о степени раскисления стали делают в виде индекса: кп — кипящая; пс — полуспокойная; сп — спокойная. Стали марок Ст3Гпс, Ст3Гсп и Ст5Гпс содержат повышенное количество марганца, на что указывает буква Г.

Сталь группы Б изготовляют тех же марок, что и сталь группы А, но в начале обозначения марки вводят букву Б, например сталь БСт1кп. Для сталей группы А букву впереди марки не ставят.

К сталям группы В предъявляют дополнительные требования по ударной вязкости при нормальной и пониженной температурах.

В обозначении марок сталей всех групп вводят также цифры от 1 до 6, характеризующие категорию стали. Категория определяется совокупностью механических свойств стали либо особенностями ее химического состава. Цифру 1 в сталях первой категории не указывают.

Примеры обозначения марок стали: Ст3кп — группа А, сталь 3, кипящая, категория 1; БСт2пс2 — группа Б, сталь 2, полуспокойная, категория 2; ВСт2спЗ — группа В, сталь 2, спокойная, категория 3.

Читайте так же:
Литиевая смазка область применения

В строительстве используют стали всех групп. Наиболее пластичные стали Ст1 и Ст2 применяют в конструкциях резервуаров, трубопроводах. Из стали СтЗ, Ст4 и Ст5 изготовляют строительные конструкции, а также арматуру для железобетона. В большом количестве углеродистая сталь обыкновенного качества расходуется на изготовление листового, круглого, уголкового, швеллерного, двутаврового проката.

Сталь качественная конструкционная (ГОСТ 1050—74**) содержит по сравнению со сталью обыкновенного качества меньше серы и фосфора (до 0,04% каждого). Сталь весьма однородна по составу. Благодаря этим особенностям она характеризуется более высокими механическими свойствами.

В обозначении марок стали ставят двузначные цифры, показывающие среднее содержание углерода в сотых долях процента. Например, марка 45 означает, что сталь содержит 0,42…0,50% углерода. Качественные стали выпускают марок от 05 до 85. Сталь марок 20…45 используют для анкерных колодок и клиньев при натяжении арматуры.

Кроме того, выпускают углеродистые качественные стали с повышенным содержанием марганца — 15Г, 20Г…70Г, где буква Г означает, что в их состав входит 0,7…1,2% марганца.

Специальные стали характеризуются однородной мелкозернистой структурой. В изделиях не должно быть внешних дефектов — раковин, трещин, пор. Из стали изготовляют, в частности, металлические конструкции мостов.

Инструментальные качественные углеродистые стали содержат 0,65…1,35% углерода. Эти стали маркируют так: буква У и цифры показывают среднее содержание углерода в десятых долях процента. Выпускают их марок У7, У8…У13. Содержание марганца в этих сталях не более 0,4, кремния — 0,35, серы — 0,03 и фосфора — 0,035%. Кроме того, выпускают высококачественные стали, содержащие еще меньше серы и фосфора. В обозначениях марок высококачественных сталей в отличие от качественных добавляют букву А, например сталь У7А, У8А.

Структура углеродистых сталей

Сталями называется сплавы железа с углеродом, содержащие от 0,02 % до 2,14 % углерода. При содержании углерода до 0,006 % сплавы однофазные и имеют структуру феррита, например, электролитическое железо.

Сплавы, содержащие от 0,006 % до 0,02 % углерода называются техническим железом (рисунок 4.7).

Увеличение содержания углерода вследствие его незначительной растворимости в феррите вызывает появление второй фазы — цементита третичного. При содержании углерода до 0,025 % структурно свободный цементит выделяется, главным образом, по границам зерен феррита. Это существенно понижает пластичность и вязкость стали, особенно, если цементит распола-

гается цепочками или образует сетку вокруг зерен феррита.

При увеличении содержания углерода выше 0,025 % в структуре стали образуется перлит; одновременно еще до 0,10 — 0,15 % С в стали появляются включения структурно свободного (третичного) цементита. С дальнейшим повышением содержания углерода третичный цементит входит в состав перлита.

За превращениями, протекающими в сталях в процессе их нагрева и охлаждения, можно проследить, пользуясь левой частью диаграммы состояния (рисунок 4.6).

По микроструктуре стали делятся на доэвтектоидные, эвтектоидные и заэвтектоидные (рисунки 4.8, 4.9, 4.10). Стали с содержанием углерода от 0,02 до 0,8 % называют доэвтектоидными; с содержанием 0,8 % углерода – эвтектоидными; с содержанием от 0,8 % до 2,14 % – заэвтектоидными.

Как следует из диаграммы Fe-Fe3C, при комнатной температуре в равновесном состоянии микроструктура доэвтектоидной стали состоит из феррита и перлита (рисунок 4.8). Количественное соотношение между структурными составляющими (Ф и П) в доэвтектоидных сталях определяется содержанием углерода. Чем ближе содержание углерода к эвтектоидной концентрации, тем больше в структуре перлита.

Микроструктура эвтектоидной стали (0,8 % С) состоит только из перлита (рисунок 4.9). Образуется из аустенита при охлаждении стали У8 (линия PSK). Строение перлита вследствие его значительной дисперсности (мелкозернистости) может быть детально различимо только при сравнительно больших увеличениях (×600).

Микроструктура заэвтектоидной стали (рисунок 4.10) состоит из перлита и вторичного цементита. Образуется у стали У9-У13 из аустенита при охлаждении. Сетка цементита начинает образовываться на линии ES, перлит – на линии PSK. Максимальное количество структурно свободного цементита (

20 %) будет в сплаве с содержанием углерода 2,14 %.

также светлую окраску, необходимо шлиф, протравленный 4 %-ным раство-

ром азотной кислоты, заново перешлифовать, переполировать и заново про-

Читайте так же:
Кто изобрел переменный ток

травить раствором пикрата натрия, который окрашивает цементит в темный

По микроструктуре доэвтектоидной стали можно приблизительно определить содержание в ней углерода, для чего нужно ориентировочно определить площадь (в процентах), занимаемую перлитом, в связи с тем, что в феррите растворено очень небольшое количество углерода, практически можно считать, что в доэвтектоидной стали весь углерод находится в перлите.

где С – концентрация углерода в сплаве, в процентах;

П S — видимая часть площади микроструктуры, занимаемая перлитом

По количественному соотношению перлита и феррита, согласно ГОСТ 8233-56 Сталь. Эталоны микроструктуры, ферритно-перлитные структуры классифицируются по десятибальной шкале (таблица 4.1). Оценка производится визуально при 100-кратном увеличении по средней площади, занимаемой перлитом на микрошлифе.

Зависимость механических свойств углеродистых сталей от

Содержания углерода

Изменение содержания углерода вызывает изменения в структуре стали, что, в свою очередь, оказывает определяющее влияние на свойства стали.

В соответствии с диаграммой состояния структура стали в равновесном состоянии представляет собой смесь феррита и цементита, причем количество цементита увеличивается пропорционально содержанию углерода. Феррит малопрочен и пластичен, цементит твёрд и хрупок. Поэтому увеличение цементита приводит к повышению твердости, прочности и снижению пластичности.

оказывает вторичный цементит, образующий хрупкий каркас вокруг зерен

перлита. Под нагрузкой этот каркас преждевременно разрушается, вызывая

снижение прочности, пластичности. Из-за этого заэвтектоидные стали при-

меняют после специального отжига со структурой зернистого перлита, отли-

чающегося от пластинчатого перлита меньшей твердостью и большей пла-

Углерод изменяет технологические свойства стали: обрабатываемость резанием, давлением, свариваемость. Увеличение содержания углерода ведет к снижению обрабатываемости резанием. Лучшей обрабатываемостью резанием обладают стали с содержанием 0,3 — 0,4 % С.

С увеличением содержания углерода снижается технологическая пластичность – способность деформироваться в горячем и, особенно, в холодном состоянии. Для сложной холодной штамповки содержание углерода ограничивается 0,1 %.

Углерод затрудняет свариваемость сталей. Хорошей свариваемостью обладают низкоуглеродистые стали. Для иллюстрации на рисунке 4.11 приведен график зависимости механических свойств стали от содержания углерода.

Классификация и маркировка углеродистых сталей

Углеродистые стали подразделяют на низкоуглеродистые до 0,25 % C, среднеуглеродистые (0,3 — 0,6 % C), высокоуглеродистые (более 0,6 % С). По применению углеродистые стали подразделяются на конструкционные и инструментальные. Конструкционные стали классифицируют на стали обык-

новенного качества и качественные.

Конструкционная углеродистая сталь обыкновенного качества обозначается буквами Ст, после которых стоит цифра от 0 до 6, обозначающая но-

мер марки стали (с увеличением номера возрастает содержание углерода),

например: Ст1, Ст2, …, Ст6. Чем больше номер, тем выше прочность и твер-

дость, но ниже пластичность (таблица 4.2). Наиболее пластичные и наименее

твердые — Ст0, Ст1, Ст2 — идут на изготовление кровельных листов, крепеж-

ных изделий; наиболее твердая и прочная сталь этой группы — Ст6 применя-

ется, например, в производстве рельсов, рессор. Стали обыкновенного каче-

ства выпускают в виде проката (прутки, балки, листы, уголки, швеллеры и

Углеродистые качественные стали характеризуются более низким, чем у сталей обыкновенного качества содержанием вредных примесей и неме-

Качественную сталь маркируют двузначным числом, обозначающим среднее содержание углерода в сотых долях процента. Низкоуглеродистую сталь марок 08, 10, 15, 20, 25 применяют для изготовления метизов и деталей, от которых не требуется высокой прочности. Среднеуглеродистые стали 30, 35, …, 55 отличаются большей прочностью, меньшей пластичностью, чем низкоуглеродистые. Высокоуглеродистые стали марок 60, 65, …, 85 имеют большую твердость и прочность и применяются для изготовления ответст-

венных деталей машин.

Качественные инструментальные стали маркируют буквой У и цифрой, указывающей на содержание углерода в десятых долях процента: У7, У8 и т.д. Высококачественные инструментальные стали маркируют так же, как и

качественные, но в конце марки ставят букву А: У7А, У8А — У12А.

Порядок выполнения работы

4.8.1 Изучите по диаграмме состояния Fe – Fe3C превращения, проис-

ходящие в железоуглеродистых сплавах при охлаждении.

4.8.2 Ознакомьтесь со структурными составляющими железоуглероди-

стых сплавов. Найдите на диаграмме состояния области существования этих

Читайте так же:
Брелки на ключи из резинок

4.8.3 Получите у лаборанта микрошлифы образцов различных сталей. С помощью металлографического микроскопа изучите структурные

составляющие железоуглеродистых сплавов. Определите вид сплава: сталь

(доэвтектоидная, эвтектоидная, заэвтектоидная).

4.8.4 Зарисуйте все просмотренные структуры с указанием фазовых и

структурных составляющих. Микроструктуры зарисовать в квадратах разме-

ром 50 × 50 мм. Основное при зарисовке микроструктуры – уловить харак-

терные особенности микроструктуры и передать их на рисунке. Нет надобно-

сти передавать на рисунке фотографически точное изображение. Фазы и

структурные составляющие указывать стрелками, на полях писать их наиме-

Содержание отчета

4.9.1 Цель работы.

4.9.2 Краткое описание структурных составляющих железоуглероди-

4.9.3 Рисунок диаграммы состояния Fe – Fe3C.

4.9.4 Схемы и описание микроструктуры сталей и чугунов.

4.9.5 Выводы по работе. В выводах указывается влияние содержания

углерода на структуру и механические свойства; влияние формы графитовых

включений и структуры металлической основы на свойства чугунов.

4.10 Контрольные вопросы

4.10.1 Какие железоуглеродистые сплавы относятся к техническому

железу, сталям и чугунам?

4.10.2 Каковы фазовые и структурные составляющие системы Fe-C?

Характеристика структурных составляющих.

4.10.3 Какая из структур железоуглеродистых сплавов является меха-

нической смесью феррита и цементита?

4.10.4 Что такое ледебурит?

4.10.5 Как классифицируют по структуре стали и чугуны?

Приложение А

Приобретение навыков работы с диаграммой состояния железо-углерод

Сплав содержит 0,7 % углерода. Заданная температура 600 °С.

Номера темпе- ратурных интерваловТемпературные границы интер- валов, °СКонцентрация углерода в фазовых состояниях, %Струк- тур- ный составВариантность системы
верхние границынижние границынаименование фазына верх- ней гра- нице тем- пера- турного интервалана ниж- ней гра- нице тем- пера- турного интервала
Ж А0,7 0,22,25 0,7Ж+А
А0,70,7А
А Ф0,7 0,0160,8 0,02А+Ф
Ф А Fe3С0,8 0,02 6,670,8 0,02 6,67А+Ф+ П
Ф Fe3С0,02 6,670,01 6,67Ф+П
Ж — жидкость, А — аустенит, Ф — феррит, П — перлит, Fe3С — цементит

Лабораторная работа № 5

Упражнения по диаграмме железо-углерод *)

Цель работы

Приобретение навыков работы с диаграммами состояния на примере

Общие сведения

Диаграммы состояния представляют собой графическое изображение состояния сплавов. Свойства сплавов определяются, прежде всего, составом фаз и их количественным соотношением. Сведения о составе и соотношении фазовых составляющих можно получить, анализируя диаграмму состояния. Зная диаграмму состояния, можно представить полную картину кри-

сталлизации любого сплава, формирования его структуры. Диаграмма со-

стояния позволяет оценить свойства сплавов, найти оптимальные параметры

таких технологических процессов как литье, термическая и химико-

термическая обработка, сделать заключение о возможности обработки давле-

Порядок выполнения работы

5.3.1 Получите у преподавателя задание на выполнение работы (на пер-

вом этапе — концентрацию углерода в сплаве, на втором – температуру спла-

5.3.2 Опишите процесс кристаллизации сплава заданного состава (этап

первый). В процессе работы заполните таблицу 5.1.

Таблица 5.1 – Фазовый и структурный состав сплава в температурных

Номера темпе- ратурных интерваловТемпературные границы интер- валов, °СКонцентрация углерода в фазовых состояниях, %Струк- тур- ный составВариантность системы
верхние границынижние границынаименование фазына верх- ней гра- нице тем- пера- турного интервалана ниж- ней гра- нице тем- пера- турного интервала

Прокрутить вверх

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования.

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.

Влияние углерода на свойства стали

Механические свойства стали зависят от наличия углерода в ее составе. Углерод в стали дает возможность изменять эти свойства и использовать ее в производстве в соответствии с показателями прочности и пластичности. При должных условиях цементация металла может пройти качественно и наделить сталь новыми полезными свойствами.

Читайте так же:
Как переделать батареи на шуруповерте на литиевые

Изменение структуры при добавлении углерода

Показатели прочности и пластичности зависят от структуры и ее изменений при увеличении содержания углерода.

При доле до 0,2% образуется феррит и третичный цементит, дальнейшее увеличение приводит к образованию эвтектоидного феррита и цементита (перлита). Значение показателя перлита постепенно повышается и при углероде 0,8% содержится только перлит. Если содержание более 0,8% появляются иглы вторичного цементита и перлит.

Образование цементита происходит до 2% углерода, при этом снижается прочность из-за хрупкости цементитной сетки по границам перлитных зерен. При превышении этого значения формируется эвтектическая смесь.

Новые свойства и преимущества сплава

Углерод в составе стали дает ей дополнительные преимущества, прежде всего это:

  • достаточная твердость поверхностного слоя и относительная мягкость внутреннего слоя;
  • хорошая обрабатываемость;
  • долговечность;
  • доступная цена.

С увеличением доли углерода возрастает твердость, прочность и уменьшается пластичность, следовательно, чем его больше, тем труднее процесс обработки резанием, хуже показатели деформации и сваривания. Исходя из этого выделяют следующие виды стали:

  1. Низкоуглеродистые, с долей менее 0,25%. Они достаточно пластичны, легко поддаются деформации и обработке.
  2. Среднеуглеродистые, с долей 0,3-0,6%. Этот вид также пластичен, имеет средний показатель прочности.
  3. Высокоуглеродистые, с долей 0,6-2%. С низкой вязкостью и высоким показателем прочности. Сварка производится только с предварительным разогревом до 225 градусов.

Помимо основных механических свойств, увеличение содержания углерода дает повышение порога хладноломкости.

Применение углеродистой стали

Сферы применения зависят от механических свойств, и, следовательно, от того, сколько углерода в стали. С показателем 0,7-1,3% углеродистую сталь используют для изготовления режущих и ударных инструментов. Маркируют их буквой «У», последующая цифра характеризует долю, например, У13. Чем выше показатель, тем больше влияние углерода на механические свойства стали.

Низкоуглеродистые стали разделяют на подгруппы в зависимости от назначения:

  1. Низкоуглеродистые: 05, 08, 10. Благодаря своей пластичности используются в холодной штамповке для изготовления шайб, прокладок, кожухов и иных деталей.
  2. Низкоуглеродистые: 15, 20, 25. Такое значение углерода в составе стали дает повышенную твердость и достаточный задел вязкости, применяются для изготовления деталей малого размера (кулачков, толкателей, малонагруженных шестерней).
  3. Среднеуглеродистые: 30, 35, 40, 45, 50, 55. Применяются для изготовления коленчатых валов малооборотных двигателей, зубчатых колес, маховиков – деталей, у которых работоспособность определяется сопротивлением усталости. Используют после нормализации и поверхностной закалки, которые повышают вязкость и пластичность, соответственно, улучшается показатель обрабатываемости.
  4. Высокоуглеродистые: 60, 65, 70, 75, 80, 85. Применяются для изготовления рессор, эксцентриков и пружин. Предварительно подвергаются закалке и среднему отпуску, что улучшает свойства упругости необходимые для изготавливаемых деталей.
  5. Котельные: 12К-22К. Используют для изготовления оборудования, эксплуатируемого при высоких температурах (сосуды и котлы для турбин и камер сгорания).
  6. Сталь автоматная. Нашла применение для изготовления крепежных изделий автомобилей в статических нагрузках (шпильки, гайки, болты).

Влияние других примесей

Как и углерод, иные химические элементы в составе стали влияют на ее механические свойства:

  • кремний – используется как активный раскислитель;
  • марганец – снижает влияние кислорода и серы, уменьшает стойкость к нагрузкам;
  • сера и фосфор – увеличивают показатель красноломкости, относятся к категории вредных примесей;
  • титан – улучшает показатели прочности и пластичности;
  • хром – повышает жаростойкость и стойкость к стиранию;
  • никель – улучшает вязкость и упругость;
  • медь – оказывает влияние на стойкость к коррозии.

Механические свойства стали полностью зависят от ее состава и наличия тех или иных примесей. Именно эти характеристики необходимо учитывать при применении стали в промышленном производстве. Некоторое негативное влияние содержания элементов можно снизить дополнительными методами улучшения – термическим упрочением поверхности (цементация) или добавлением антикоррозийной защиты, проще говоря – гальваника, покрытие которой увеличивает срок службы изделия.

footer-logoЦСР — Металлоконструкции и Металлообработка

Мы надежная компания, в основе деятельности которой – правила честной конкуренции и жесткого контроля качества услуг.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector