Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотный регулятор скорости для асинхронного двигателя

Частотный регулятор скорости для асинхронного двигателя

Регулировка скорости изменением величины напряжения снижает момент и также увеличивает потери мощности. Регулировка частоты вращения путем изменения числа полюсов осуществляется ступенчато, кроме того, этот способ пригоден только для специальных многоскоростных двигателей с несколькими обмотками неподвижной части.

Асинхронный двигатель – самый распространенный электропривод технологического оборудования. Главная особенность таких электрических машин – постоянная скорость вращения вала. Ее регулировку осуществляют:

  • Механическим способом. Для этого вал подключают к редукторам, муфтам и другим устройствам.
  • Путем изменения числа пар полюсов, величины или частоты питающего напряжения обмоток статора.

Механическое регулирование усложняет кинематическую схему электропривода, ведет к потерям мощности и нерациональному расходу электроэнергии.

Наиболее перспективный метод регулирования уголовной скорости ротора – преобразование частоты питающего напряжения. Этот способ обеспечивает сохранение механических характеристик во всем диапазоне и обладает рядом других преимуществ.

Устройство и принцип работы частотного регулятора

Принцип частотного регулирования основан на зависимости угловой скорости вращения ротора от частоты напряжения на обмотках статора. С появлением IGBT-транзисторов и GTO-тиристоров наибольшее распространение получила схема преобразования частоты на базе широтно-импульсного модулятора.

Такие преобразователи частоты состоят:

  • Из силового выпрямителя с С или LC фильтром для сглаживания пульсаций.
  • Из инвертора на IGBT-транзисторах для преобразования постоянного напряжения в переменное, заданной частоты и амплитуды.
  • Из блока управления для генерации отпирающих силовые транзисторы импульсов.

Переменное напряжение выпрямляется и преобразуется в постоянное, затем снова инвертируется в переменное. Частота на силовом выходе ПЧ определяется длительностью отпирающих силовые транзисторы импульсов, поступающих со схемы управления.

Такой способ регулирования позволяет изменять частоту и амплитуду напряжения в силовой цепи электродвигателя, а значит управлять скоростью вращения ротора и моментом на валу электрической машины.

Структура частотного регулятора

Большинство частотных преобразователей для электродвигателей до 690 В выполнены по схеме двухуровневых инверторов напряжения. Они позволяют моделировать напряжение питания необходимой формы, амплитуды частоты. Такие устройства состоят из неуправляемого выпрямителя, 2-х транзисторных ключей на каждую фазу и конденсатора. Выходное напряжение содержит высшие гармоники, которые сглаживаются индуктивной нагрузкой. Специальные фильтры применяют относительно редко.

К недостаткам такой схемы является ограничение величины выходного напряжения, которое определяется максимальным напряжением полупроводниковых устройств.

Для высоковольтных приводов используются многоуровневые схемы регулирования. Они состоят из нескольких однофазных инверторов, соединенных последовательно. Такая схема позволяет избежать резонансов, обеспечивает высокое быстродействие, снижает скорость нарастания напряжения. Такие ПЧ имеют модульную конструкцию. При выходе из строя одной из ячеек, ее легко заменить. К недостаткам этой схемы относятся необходимость отдельного источника питания для каждого модуля, функции которого выполняет трансформатор специального назначения.

Преобразователи частоты с плавающими конденсаторами позволяют обойтись без входного трансформатора и увеличивать число ячеек в зависимости от требуемой мощности. Такое решение обеспечивает снижение высших гармоник, уменьшает скорость нарастания напряжения.

Для регулировки скорости электродвигателей с повторно-кратковременным режимом работы частыми реверсами применяют инверторы тока. Эти устройства представляют собой управляемый выпрямитель и инвертор на тиристорах. Для уменьшения помех в цепи нагрузки в схему включается расщепленный индуктивный фильтр. Выходное напряжение таких устройств имеет форму аппроксимированной синусоиды. Для сглаживания его формы обязательно включение перед электродвигателем конденсаторов. Главное достоинство таких ПЧ – возможность рекуперации электроэнергии обратно в электросеть.

Прямые преобразователи частоты не содержат конденсаторов. Главное их преимущество – небольшие габариты и значительная мощность нагрузки. Такие устройства используются в составе мощных электроприводов работающих на низких скоростях. ПЧ этого типа выполнены на базе тиристорных преобразователей. На входе прямых ПЧ установлен фазосдвигающий трансформатор, устраняющий низшие гармоники и выполняющий функцию источника питания для каждого преобразователя. Прямые ПЧ требуют сложной схемы управления.

Состав частотных преобразователей

Кроме выпрямителя, ШИМ-модулятора и инвертора, в состав частотного преобразователя входят:

Устройство для ввода данных и обмена информаций с ПК, другими частотными преобразователями.

  • Встроенная энергонезависимая память. В этом устройстве фиксируются аварийные отключения, изменения настроек, а также другие данные.
  • Управляющий контроллер, обеспечивающий реализацию алгоритмов управления, обработку данных с датчиков, защитное отключение при ненормальных режимах работы.
  • ЭМ-фильтр. Это устройство обеспечивает снижение реактивной высокочастотной составляющей, снижающей качество электроэнергии и отрицательно влияющей на работу электродвигателя.
  • Вентилятор и радиатор для принудительного охлаждения и отвода тепла силовых транзисторов.
  • Тормозной прерыватель и другие элементы.

Кроме аппаратной части, преобразователи частоты содержат программное обеспечение. Контроллеры с открытой логикой позволяют вносить изменения в стандартное ПО, поставляемое производителем, и самостоятельно программировать ПЧ.

Однофазные преобразователи частоты

Однофазные асинхронные электродвигатели широко применяются в качестве приводов насосных агрегатов, вентиляторов, маломощных станков. Для регулирования частоты вращения этих электрических машин применяются 2 основных способа:

  • Изменение величины напряжения питания.
  • Изменение частоты питающего напряжения.
Читайте так же:
Кровельный нож для мягкой кровли

Для регулирования питающего напряжения применяются трансформаторные, автотрансформаторные, тиристорные, симисторные и транзисторные преобразователи. Изменение частоты вращения путем регулирования напряжения имеет ряд серьезных недостатков:

  • Увеличение скольжения и сильный нагрев обмоток статора.
  • Узкий диапазон регулирования.

Кроме того, постоянная составляющая питающего напряжения на выходе тиристорных и симисторных устройств вызовает увеличение шума при работе, рывки и другие нежелательные явления.

Частотное регулирование лишено этих недостатков. Однофазные ПЧ применяются в холодильном оборудовании, системах вентиляции, бытовых насосах.

Такие электроприводы обеспечивают:

  • Стабильную работу однофазного двигателя при любой частоте вращения.
  • Снижение потребления электроэнергии.
  • Возможность автоматической регулировки частоты вращения с обратной связью по изменению одного или нескольких технологических параметров.
  • Удаленное управление и контроль характеристик.
  • Защиту от ненормальных режимов работы и коротких замыканий.
  • Интеллектуальное управление электродвигателем в соответствии с заданным алгоритмом.
  • Возможность пуска без фазосдвигающего элемента.
  • Поддержание необходимого момента на валу во всем диапазоне изменения скорости.

Кроме базовых составляющих, в состав однофазного преобразователя частоты входят ПИД-регулятор, ПЛК-контроллер, устройство для обмена данными с удаленным оборудованием, пульт дистанционного управления. При введении дополнительных настроек допустимо применение трехфазного ПЧ для однофазных двигателей переменного тока.

Таким образом, управление однофазными и трехфазными асинхронными электродвигателями путем изменения частоты значительно превосходит метод регулирования величины напряжения, механические способы.

Регуляторы оборотов с поддержанием мощности в двигателях

Регулятор оборотов с поддержанием мощности

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Регулятор оборотов коллекторного двигателя 220в своими руками

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Схема регулятора оборотов коллекторного двигателя 220в

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

Регулятор оборотов с поддержанием мощности схема

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Читайте так же:
Чем сверлить бетонные стены для дюбелей

Схема регулятора оборотов двигателя постоянного тока 12в

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Регулятор оборотов электродвигателя 12в своими руками

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Асинхронный двигатель и регулятор оборотов

Схема регулировки оборотов двигателя постоянного тока 12в

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

Регуляторы оборотов с поддержанием мощности в двигателях

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

Коллекторный двигатель и регулировка его оборотов

При эксплуатации коллекторных электродвигателей нередко возникает необходимость в регулировании оборотов устройства. Важно при этом не снизить общие показатели мотора, чтобы работа не пошла насмарку. Рассмотрим же детально особенности самостоятельного регулирования.

Регулятор по схеме

Силовые агрегаты данного типа активно используются в бытовой электрической технике, инструментах: стиральных машинах, болгарках, пылесосах, дрелях, квадрокоптерах и др. это обусловливается высокой результативностью приборов, которые демонстрируют большое число оборотов и высоким крутящим моментом (также и пусковым). Данных технических характеристик с лихвой хватает на обеспечения работы техники и инструментов на требуемом уровне.

Сами моторы работают от сетей как постоянного, так и переменного токов, от обычных бытовых сетей. Чтобы осуществить управление скоростями оборотов ротора такого двигателя, необходимо использовать специальные регуляторы. При этом потери в мощностях будут минимальными.

Общие параметры

Принцип работы и общая конструкция таких силовых агрегатов известны большинству, ведь при создании или модернизации конструкции не обойтись без познаний в данной категории. Состоит мотор из таких ключевых элементов:

  • ротора;
  • статора;
  • коммутационного узла щеточно-коллекторного типа.
Читайте так же:
Приспособа для распила бревна бензопилой

При подаче питания на ротор и статор, на каждом из них образовываются магнитные поля, которые взаимодействуют между собой. Это в свою очередь вызывает вращения у ротора.

Подача питания на этот компонент осуществляется с применением графитовых щеток, которые плотно прилегают к ламелям коллектора. Чтобы изменить направленность оборотов ротора, нужно поменять положение фаз напряжения на одном из двух элементов: статоре или роторе.

Обмотки этих приспособлений могут получать питание от источников, или подключаться друг к другу параллельно. Именно на основе этой особенности силовые агрегаты классифицируются на параллельные и последовательные. От этого зависит способ возбуждения медных обмоток.

Если говорить про коллекторные моторы последовательного типа, то именно они чаще всего применяются в бытовых электрических приборах. Это обусловливается тем, что именно такое возбуждение дает возможность получать самый устойчивый к перегрузкам мотор.

Регуляторы стандартные

Что касается данных компонентов, то они реализуются множеством способов. Первая и самая простая схема – тиристорная. Такая технология применяется в бытовых приборах: стиральных машинах, дрелях, шуруповертах, пылесосах, и др. С легкостью подключаются к сетям переменного тока, в том числе и бытового назначения.

Стандартная схема

Работа этой схемы довольно простая: на всех участках сетевых токов, конденсатор получает ток при помощи резистора. Зарядка осуществляется до уровня открытия динистора, который подключен к регулирующим электродам сисмстора. После этого последний открывается и через него проходит ток к нагрузкам КД.

Схема дает возможность продуктивно регулировать время подзарядки конденсатора в управленческой цепи, а также определяя среднюю мощность напряжения, подаваемую на мотор.

Давайте упорядочим все шаги работы данной схемы. Вот они:

  1. подача тока к конденсатору от источника питания на 220 вольт;
  2. напряжение для пробоя динистора подается также, но уже через резистор переменного типа;
  3. непосредственно пробой;
  4. открытие симистора. Компонент работает непосредственно с показателями нагрузки;
  5. чем выше напряжение – тем чаще симистор открывается.

Данная технология обеспечивает простое, но в то же время эффективное регулирование интенсивности оборотов. Но, в то же время применение стандартной схемы не обеспечивает обратной связи, что также стоит учитывать при ее реализации. Исходя из этого, нужно также знать, что при изменении показателей нагрузки, параллельно будут нуждаться в настройке обороты мотора.

Схема симисторная

Этот механизм имеет много общих параметров с диммером, применяемом для регулирования уровня яркости ламп накалывания. Обратная связь также отсутствует. Реализовать реверс по току моно, но с применением вспомогательной электроники. Это делается для того, чтобы беспрепятственно удерживать мощность на заданных показателях, не допуская перегревов и перегрузок.

Реостатная схема

Относится к модифицированным схемам, но, несмотря на это, ее реализация также отличается простотой. С помощью получается стабилизировать обороты, а также рассеивать огромное количество вырабатываемого тепла. Регулировка осуществляется с помощью радиатора, который нужно заранее заготовить. Надо обеспечить и эффективный отвод тепла, что приводит к потерям энергии и, как следствие – коэффициента полезного действия. Для того чтобы предотвратить эти недостатки, рекомендуют применять активное охлаждение на постоянной основе.

Реостатная схема

Полученный регулятор ограничитель отличается своей эффективностью, при реализации смены числа оборотов двигателя. Также достичь производительности помогут силовые транзисторы, «отбирающие» определенную долю напряжения. Это обусловливается тем, что количество тока из сети 220В доходит до мотора в меньшем объеме, благодаря этому, силовой агрегат не сталкивается с большими нагрузками.

Интегральная

Стабилизация также относится к модифицированным схемам. Здесь в основе процесса регулирования лежит таймер интегрального действия. Его основная задача – контролировать уровни нагрузки на электродвигатель. Здесь также находят свое применение транзисторы. Особенность обусловливается микроконтроллером, входящим в состав системы, при этом, обладающим высокими параметрами выходного напряжения.

В ситуациях, когда имеет место нагрузка в 0,1 ампер, все токи поступают напрямую на плату, обходя транзисторы. Чтобы обеспечить эффективную работу регулятора, необходимо, чтобы на затворе было напряжение 12в. Следовательно, для слаженной работы, электрическая цепь и уровень напряжения в источнике питания должны соответствовать этому диапазону. Ресурс регулятора позволяет устанавливать компонент в мощных модификациях, для точного и быстрого регулирования их работы.

Интегральная схема

Самостоятельное создание регулятора

Заводские регуляторы представлены в широком ассортименте, как в интернете, так и обыкновенных магазинах. Но, если у вас нет желания приобретать готовый компонент и вы хотите собрать его самостоятельно – это реально осуществить. Чтобы задача была успешной – необходимо следовать алгоритму конструкции и иметь в наличии все необходимые компоненты.

  • проводки;
  • готовая схема;
  • конденсаторные схемы;
  • тиристор;
  • резистор;
  • паяльник.

Ориентируясь на схему компоновки, мощностной и оборотный регулятор будет отвечать за контроль первого полупериода. Самодельный стабилизатор имеет такой алгоритм работы (пример нашей модели):

  1. прибор, подключенный к стандартной сети питания на 220в, принимает ток на конденсатор;
  2. компонент сразу же срабатывает, после получения заряда;
  3. передача нагрузки к резисторам и нижним кабелям;
  4. соединение положительного конденсаторного контакта к тиристорному электроду;
  5. подача одного заряда напряжения на достаточном уровне;
  6. открытие второго полупроводника;
  7. конденсатор подает на тиристор нагрузку, он в свою очередь пропускает ее через себя;
  8. конденсатор разряжается;
  9. повторение полупериода;
Читайте так же:
Цена на шину бензопилы

Если мощность двигателя постоянного или переменного тока большая – регулятор обеспечивает экономную работу устройства. Для использования приспособления в своих бытовых, мощности и ресурса хватает. Но, когда нужно осуществлять регулирование оборотов без потери мощности и более крупных и производительных агрегатов, тогда стоит обратить внимание все же на заводские модификации. Несмотря на то, что такой вариант получится дороже, он обеспечит 100%-ю работоспособность и надежность.

А сейчас давайте рассмотрим другие, нестандартные, но довольно распространенные методы регулировки и стабилизации.

Способ 2

Здесь используется микросхема типа TDA 1085 со стандартной платой. Можно при желании создать собственную, «модернизировав» и изменив неподходящие элементы. К примеру, можно применять двухстороннюю печатную плату. Конденсаторные и резисторные детали могут применяться при поверхностном монтаже. Рекомендуется развести друг от друга низко- и высоковольтные цепи. А «земля» должна разводиться с учетом параметров микросхемы.

Пример собранной платы

В результате получается компактная двусторонняя плата, обеспечивающая точное регулирование.

Частотная регулировка

Для решения этой задачи применяются частотные преобразователи (драйверы, инверторы), которые присоединяются к прибору. Они обеспечивают выпрямление напряжения, поступающего от источника. Агрегаты внутри формируют напряжение и частоты на необходимых уровнях. Далее осуществляется подача этих параметров на эл двигатель.

Стабилизация коллекторного двигателя 12в Все характеристики, необходимые для регулирования работы, частотник рассчитывает сам, ориентируясь на внутренние алгоритмы, которые установлены производителем.

Из преимуществ такого способа стоит выделить:

  • быстрое достижение плавности регулировки частот оборотов электрического мотора;
  • возможность изменения скоростей и направлений вращения моторов;
  • требуемые параметры поддерживаются самостоятельно;
  • экономические выгоды.

Из слабых сторон стоит выделить обязательность наличия преобразователя, который нужно приобретать отдельно. Но, справедливости ради отметим, что цена на частотники невысокая и они легко впишутся в бюджет любого дома, хозяйства, предприятия.

Изменение числа полюсов

Уменьшение или увеличение количества пар полюсов – еще один эффективный способ провести регулировку. Этот вариант особо актуален для моделей двигателей многоскоростного действия со сложными роторными обмотками. Данные элементы разделены на определенные группы и чередуются в процессе работы. Осуществляется это посредством коммутации, подключением последовательным или параллельным способом.

К преимуществам такого варианта регулировки относят:

  • высокий КПД силового агрегата;
  • требовательные механические выходные характеристики.

Стоимость реализации – одна из самых высоких, если сравнивать с другими технологиями. Вес и размеры готовой установки также немаленькие, что требует наличия свободного места для монтажа. Сам мониторинг оборотов осуществляется со ступенью в 1500 – 3000 оборотов в минуту.

Проведение регулирование в моторах АС

Устройства, работающие от переменного напряжения, также поддерживают регулирование оборотов. Рассмотрим вкратце основные способы такого управления, характерные для АС модификаций с фазными роторами.

При помощи напряжения

Для этого используются автотрансформаторы типа ЛАТР, которые осуществляют изменение напряжения на моторных обмотках. Таким образом производится и регулирование оборотов вала.

Метод является подходящим также и для вариаций с короткозамкнутыми роторами. Оператор имеет возможность проводить управление в пределах от минимальных до номинальных параметров двигателя.

Регулятор

Определение сопротивления

Переменное сопротивление реостата (или несколько таких явлений) реализуется непосредственно в цепи ротора. Оно воздействует на роторное поле и показатели тока, из-за чего получается изменять величины скольжения и точное число оборотов электродвигателя. Существует закономерность: чем уровень тока меньше, тем выше показатель скольжения двигателя и меньше скорость.

  • широкий диапазон регулирования оборотов электрического оборудования;
  • сдержанные выходные характеристики машины.

К недостаткам относят:

  • уменьшение продуктивности мотора;
  • общее снижение рабочих параметров механизма.

Применение двойного питания

Здесь используются двигатели с двойным питанием, подающимся через вентильные приспособления. Основной упор делается на изменение показателей скольжения. При регулировании работы крупных специализированных машин, компонент подает и регулирует величину ЭДС (электродвижущей силы) на ротор от отдельно выбранных источников напряжения.

Вывод

При подаче напряжения у асинхронных моделей моторов наблюдаются рывки ротора. Это явление негативно влияет на работу, как самого агрегата, так и его привода. Именно поэтому, регулировка осуществляется по принципу плавного старта. Он обеспечивается такими факторами:

  • старт посредством ЛАТР;
  • разгон и работу мотора путем переключения обмоток по схемам треугольник/звезда;
  • применение защитных устройств, например, частотного преобразователя.

Важно при регулировании оборотов не потерять в мощности. Применение вышеописанных методов позволит определить вращения без снижения продуктивности. Широкий выбор заводских моделей, но, можно реализовать деталь и самостоятельно.

Регулятор скорости коллекторного двигателя

Вы можете приобрести готовое устройство (без шунта, и переменного резистора) . Для заказа нажмите на кнопку или направьте заказ на почту sales@digect.ru.

Читайте так же:
Латунь это черный металл

Регулятор скорости коллекторного двигателя с компенсацией нагрузки и защитой от перегрузки предназначен для изменения скорости вращения двигателя. При включении обеспечивая плавный старт при этом скорость вращения двигателя стабилизируется в независимости от нагрузки на валу двигателя (константная электроника).

Регулятор выполнен на ИМС U2010B и подойдет для большинства электроинструмента (болгарки, торцовки, фрезеры и т.п), оснащенного коллекторным двигателем (двигатель со «щетками») мощностью не более 2200 Вт.

Особенности

Update: Для нормальной работы функции плавного старта, выключатель должен находится в цепи 220В.

  1. Плавный старт. При подаче питания двигатель запускается плавно и без рывка, что сбережет редуктор, предохранит двигатель от преждевременного износа.
  2. Защита от перегрузки. При чрезмерной нагрузке на валу двигателя светодиод на регуляторе загорится указывая на то, что устройство перегружено, с еще большим увеличением нагрузки (вплоть до заклинивания) — регулятор остановит двигатель, восстановление работоспособности двигателя будет осуществлено согласно установленному режиму работы (см режимы работы).
  3. Функция регулирования оборотов двигателя. Возможность изменять обороты двигателя от нуля до максимума.
  4. Функция стабилизации оборотов двигателя. В середине диапазона оборотов регулятор будет пытаться стабилизировать обороты двигателя вне зависимости от нагрузки на валу двигателя.

Внимание!

Устройство, находится под высоким напряжением и не имеет гальванической развязки от питающей сети. Поэтому при работе с ним нужно соблюдать предельную осторожность. ВСЕ МАНИПУЛЯЦИИ с регулятором можно проводить ТОЛЬКО ПОСЛЕ ВЫКЛЮЧЕНИЯ ПИТАНИЯ И ПОЛНОГО ОТКЛЮЧЕНИЯ ИХ ОТ СЕТИ В регуляторе отсутствует предохранитель, поэтому необходимо предусмотреть его установку. Эксплуатация устройства без предохранителя не допускается так как в случае короткого замыкания это может привести к пожару и другим негативным последствиям.

Регулятор оборотов может работать в трех режимах, которые определяются положением перемычки X1.

Режимы работы.

  1. Индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
  2. Индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт. Данный режим устанавливается при отсутствии перемычки, и является режимом по умолчанию.
  3. Только индикация перегрузки, без остановки двигателя и защиты.

Внешний вид и расположение элементов.

  1. Напряжение питания ≈220 В.
  2. Нагрузка, коллекторный двигатель. Максимальная нагрузка 2.2 кВт
  3. Светодиод индикации перегрузки. (в версии 2021 года,установлен SMD светодиод — посмотреть)
  4. Регулировка компенсации нагрузки.
  5. Регулировка перегрузки.
  6. Переменный резистор регулировки оборотов двигателя.
  7. Регулировка пределов регулировки скорости.
  8. Перемычка для установки режима работы устройства.
  9. Шунт R6, измерителя тока.

В версии 2021 года установлен smd светодиод, при этом отверстия для монтажа обычного светодиода оставлены, если вы хотите установить выводной светодиод (иногда это необходимо, если вы хотите удалить индикацию от платы при установке его в корпус), удалите штатный smd светодиод и впаяйте необходимый вам.

Обращаю ваше внимание на то, что включая устройство с неподключенным шунтом вы можете вывести из строя ИМС U2010B! Не подавайте питание на регулятор пока не смонтируете на нем шунт и переменный резистор.

Размеры изделия (63 мм x 42 мм).

Регулировка изделия.

Установите переменный резистор в положение соответствующем минимальным оборотам , подстроечный резистор R10 (компенсация нагрузки) установить в среднее положение , включаем устройство к сети 220В. Резистором R8 (amax) выставить минимальные обороты, Минимальные обороты должны быть таковы чтобы при включении питания двигатель начинал устойчиво вращаться. Далее необходимо настроить компенсацию нагрузки. Необходимо отметить что компенсация нагрузки, работает не во всем диапазоне оборотов двигателя, например на максимальных оборотах невозможно регулировать нагрузку так как на двигатель всегда подается максимальное напряжение. Установите обороты двигателя в среднее положение, при этом увеличивая нагрузку на валу любым доступным способом, например зажимая вал двигателя тряпкой, добейтесь поворотом резистора R10 такого состояния чтобы обороты двигателя были стабильными в независимости от нагрузки. В последнюю очередь настройте защиту от перегрузки. Выставьте обороты двигателя близко к минимальным и попробуйте затормозить двигатель выставив резистором R11 такое положение при котором при повышенной нагрузке загорался светодиод VD2, а при чрезмерном либо при заклинивании двигатель обесточивался.

На симистор VS1 для охлаждения возможно придется установить радиатор, а при мощности устройства более 1 кВт его установить просто необходимо чтобы избежать выход из строя устройства в результате перегрева.

Устройство может работать некорректно, если на двигателе установлена «конкурирующая» электроника, как пример в дисковой пиле Интерскол ДП-190 (посмотреть), установлен «плавный старт» и если его не убрать, то пила будет дергатся, обороты плавать, убедитесь что у вас нет ничего подобного!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector