Как сделать регулятор оборотов для болгарки своими руками
Как сделать регулятор оборотов для болгарки своими руками
Болгарка — довольно популярный инструмент, который обладает обширными функциональными возможностями. Чаще всего их применяют для разрезки металлических изделий. Однако подходят они и для работы с другими материалами. Стоит отметить, что во время использования этого электроинструмента придется периодически менять скорость вращения круга. Поэтому рекомендуется заранее разобраться, как уменьшить обороты на болгарке.
Что это за функция, принцип работы, электрическая схема, плюсы УШМ с регулятором
Большинство моделей болгарок не имеют встроенного регулятора оборотов, как на пылесосах. Такие устройства работают только на максимальной скорости вращения. Однако если встроить в них специальный регулятор, человек сможет понизить обороты до такого уровня, чтобы можно было более качественно обрабатывать тот или иной материал.
Для какой цели УШМ невысокие обороты
Многих людей интересует, для чего нужно регулировать обороты на болгарке. Чаще всего люди решают уменьшать скорость вращения круга, чтобы более бережно обрабатывать пластик или древесину.
Также при пониженной скорости возрастает безопасность использования такого электроинструмента. Дело в том, что при небольших оборотах болгарка меньше вибрирует и намного лучше сидит в руке.
Дополнительная информация! Многие профессионалы, которые регулярно пользуются болгарками от Деволт или Интерскол в домашних условиях, рекомендуют выводить регуляторы скорости за пределы устройства. Это в разы упрощает обслуживание инструмента. К тому же, болгарку не придется разбирать, если модуль настройки вращения сломается.
Для чего болгарке плавный пуск и регулятор оборотов
В современных моделях углошлифовальных устройств применяются две технологии, которые увеличивают безопасность и характеристики электроинструмента:
- Регулятор скорости вращения. Это устройство устанавливается для того, чтобы человек смог переключать режимы работы мотора.
- Плавный пуск. Чаще всего данная функция встречается в дорогих моделях от Диммер. При использовании плавного спуска работа мотора будет постепенно увеличиваться от нулевой отметки до максимального значения.
Вышеперечисленные технологии очень полезны. Дело в том, что с их помощью удается снизить изнашиваемость инструмента и увеличить срок его работы. Поэтому людям, которые решили приобрести себе болгарку, рекомендуется искать модели со встроенным плавным спуском и регулятором вращения.
Схема подключения без регулятора мощности
Люди, которые решили самостоятельно подключить устройство для настройки оборотов, должны заранее ознакомиться со схемой болгарки. Это поможет понять, как в ней все устроено.
Главным элементом всей схемы является статор. У него есть две на связанные между собой обмотки. Они подключены к источнику напряжения через отдельный выключатель. Именно в нем установлена кнопка пуска, которая отвечает за начало работы болгарки.
Каждая из имеющихся обмоток подключена к графитовым щеткам при помощи специальных контактов, которые надежно соединены с поверхностью коллектора. При этом концы обмотки подключены к коллекторным ламелям. В результате этого получается замкнутая электрическая цепь.
Как сделать регулировку для УШМ в домашних условиях, самодельные варианты
Если человеку хочется получить бесплатную регулировку для болгарки, можно попытаться сделать ее самостоятельно. Однако перед этим необходимо ознакомиться с тем, как правильно ее изготовить.
Без потери мощности
Многие люди мечтают о том, чтобы создать самодельное устройство для регулирования оборотов без дальнейшей потери мощности. Однако на самом деле изготовить их практически невозможно. Дело в том, что подобные регуляторы должны оснащаться специальными датчиками. Они самостоятельно отслеживают, насколько быстро вращается круг и при необходимости корректируют скорость. Делать такие устройства могут только производители болгарок.
Важно! В домашних условиях удастся изготовить регуляторы на полупроводниковых схемах. Они не гарантируют полное сохранение мощности при изменении частоты оборотов.
Тестирование электронного устройства
Люди, которым удалось самостоятельно собрать регулятор, должны его протестировать прежде чем подключить к болгарке. Это нужно обязательно сделать, чтобы убедиться в работоспособности изготовленного модуля.
Чтобы проверить исправность регулятора в домашних условиях, понадобится накладная электрическая розетка. В нее устанавливается два проводка, один из которых подключается к плате. Второй необходимо подсоединить к сетевому кабелю.
Когда все провода будут подсоединены, получится последовательная электрическая цепь. Для проверки регулятора к цепи надо подключить лампочку и попробовать уменьшить ее мощность. Если ее яркость начала уменьшаться, значит электронное устройство работает и его можно поставить в болгарку.
Как уменьшить/увеличить скорость вращения диска
Бывают ситуации, когда необходимо не только убавить, но и увеличить скорость вращения. В данном случае не обязательно разбираться в том, как сделать болгарку с регулировкой оборотов своими руками. Намного проще купить универсальный китайский регулятор, с помощью которого можно будет изменять обороты вращения.
Такие устройства продаются в отдельных пластиковых коробках. Они оснащаются розеткой для подсоединения болгарки и шнуром с вилкой для подключения устройства к источнику питания.
Дополнительная информация! Пользоваться подобными модулями довольно удобно. Необходимо просто подсоединить через установку болгарку и выбрать режим работы на регуляторе.
Как поставить, подключить
Устройство для уменьшения и увеличения оборотов можно подключать различными способами. Есть два метода, которые используются чаще всего при подсоединении регулятора:
- В качестве внешнего управляющего устройства. Рекомендуется размещать такие модули вне корпуса электроинструмента. Довольно часто люди устанавливают платы на полупроводниках для регулирования мощности болгарки в сетевые переноски.
- Установка внутрь корпуса инструмента. Этот способ используется крайне редко. Дело в том, что вмонтировать устройство в корпус достаточно проблематично из-за небольшого количества свободного места. Также такой метод не популярен из-за того, что в корпусе болгарки регулятор будет часто перегреваться.
Дополнительная информация! Если не удается самостоятельно подсоединить регулятор, необходимо доверить эту работу профессионалу.
Как отключить, убрать датчик напряжения
Бывают ситуации, когда необходимо избавиться от подключенного модуля для настройки оборотов. Чаще всего такое случается, если устройство выходит из строя и из-за этого не удается воспользоваться болгаркой. В таком случае остается только одно — отсоединить датчик.
Отключить регулятор достаточно просто. Если он вмонтирован в инструмент, придется снять корпус и осторожно отсоединить все провода. При использовании наружного модуля все еще проще. Необходимо отсоединить его от розетки и болгарки.
Тонкости работы болгарки с самодельным регулятором
Каждый человек, который собирается пользоваться болгаркой с дополнительным регулятором, должен ознакомиться с основными тонкостями работы такого инструмента.
- Модифицированную болгарку нельзя перегружать, так как долгая непрерывная работа может негативно сказаться на обмотке коллектора. Поэтому рекомендуется выделять время на отдых. Делается это раз в 30-40 минут. Однако если количество оборотов в минуту понижено до 1500, устройство можно не отключать в течение 1-2 часов.
- Еще один фактор, за которым надо обязательно следить — момент включения. Понижать скорость вращения можно только в тех случаях, когда инструмент уже работает. Не стоит включать его сразу на сниженных оборотах, так как из-за этого мощности может не хватить для раскручивания мотора.
Важно! Нельзя подключать модифицированный электроинструмент в перегруженную сеть.
Многим владельцам болгарок хотелось бы регулировать обороты во время работы. Сделать это можно при помощи специального модуля правления вращения. Прежде чем им воспользоваться, надо разобраться как сделать регулятор оборотов для болгарки своими руками и каким образом его можно подключить к инструменту.
Плавный пуск электродвигателя своими руками
Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.
В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.
Зачем нужны УПП?
Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.
Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.
Преимущественные особенности применения схемы с устройством плавного пуска (УПП):
- снижение стартового тока;
- уменьшение затрат на электроэнергию;
- повышение эффективности;
- сравнительно низкая стоимость;
- достижение максимальной скорости без ущерба для агрегата.
Как плавно запустить двигатель?
Существует пять основных методов плавного пуска.
- Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.
- С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.
- Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
- Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.
- Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.
Регулятор оборотов коллекторного двигателя
Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.
Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.
Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.
Заключение
УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.
Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.
Устройство и схема плавного пуска асинхронного электродвигателя
Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.
Необходимость плавного запуска
Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.
Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.
Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.
Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.
Прямой запуск
В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.
На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.
Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.
Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.
По этой причине производители крупных электродвигателей запрещают их прямой пуск.
Подключение «звезда-треугольник»
Одним из основных способов запуска машины является электросхема «звезда-треугольник». Такой старт возможен, для двигателей, у которых все начала и концы обмоток выведены.
Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.
Первоначально коммутация с сетью происходит по схеме «звезда». Контакторы К1 и К3 замкнуты. Затем, через определенное время, обмотки переключаются автоматически на схему «треугольник». Контакты К3 размыкаются, а контакты К2, наоборот, замыкаются. Реле времени в электросхеме служит для управления их переключением. На нем выставляется время разгона двигателя. При этом пусковые токи существенно снижаются.
Такой способ эффективен, но применяется он не всегда.
Старт через автотрансформатор
Этот способ применяется с использованием в электросхеме автотрансформатора, который соединен с машиной последовательно. Он служит для того, чтобы запуск произошел при пониженном на 50 — 80% от номинального напряжении. Вследствие этого пусковой ток и вращающий пусковой момент уменьшатся. Временной интервал переключения от пониженного напряжения к полному корректируется.
Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.
Устройства плавного пуска
В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.
В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.
Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.
Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.
Типы устройств плавного старта
Их можно разделить на четыре категории.
- Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
- Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
- Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
- Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.
Софт-стартеры
Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.
С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.
Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.
Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.
Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.
Как сделать простой ШИМ контроллер для электродвигателя 12в своими руками
Один мой знакомый подал мне идею сделать электровелосипед своими руками. Поначалу задумка мне показалась странной, но потом я вник и даже загорелся. На финальном этапе сборки у меня уже почти всё было готово, оставался лишь ШИМ регулятор. Почему-то его я тоже захотел сделать сам. Результатом вполне доволен, поэтому дальше расскажу вам то, как своими руками сделать ШИМ контроллер для электродвигателя.
Про ШИМ регулятор
ШИМ (PWM) регулятор широкого применения – устройство, разработанное для плавного включения, выключения и регулировки мощности, оборотов, яркости и другого.
Ранее для регулировки оборотов электродвигателей изменяли питающее напряжение. Однако в современной электротехнике от этого отказались. Теперь регулировка происходит путём подачи на электромотор импульсов тока, которые имеют разную длительность. Что и делают ШИМ (широтно-импульсно модулируемые) регуляторы, которые в последнее время становятся всё более и более популярными.
Схемы ШИМ контроллеров универсальны – подойдут и для регулировки яркости ламп, и для регулировки скорости оборотов мотора да хоть для регулирования силы тока в зарядном устройстве.
Сфера применения ШИМ регуляторов очень велика.
Обзор на плату
Собранная плата самодельного ШИМ регулятора:
Управление платы ручное и осуществляется переменным резистором или внешним напряжением в диапазонах:
0,45 В – устройство выключено, коэффициент заполнения – 0%
0,5/3,5 В – плавное регулирование, коэффициент заполнения от 0,1% до 99,9%
3,6 В – устройство включено, коэффициент заполнения – 100%
Устройство работает при постоянном напряжении от 10 до 28 Вольт.
Максимальное напряжение ограничено максимально допустимым напряжением силовых ключей, а также обратным напряжением мощного диода в нагрузке, при отдельном от дополнительного источника питания управления на 15 В.
Советую при напряжение не доходящим до 15 Вольт не устанавливать стабилизатор.
Вместо него лучше подойдёт какой-нибудь диод или обычная перемычка.
Если же напряжение от 15 до 28 Вольт, то стоит установить линейный (например, 7815) или импульсный стабилизатор в виде готового модуля на MP2307, при этом необходимо выставить на нём напряжение 15 Вольт.
Заказать их можно на всё том же Алиэкспрессе.
При необходимости вы можете регулировать частоту плавно переменным резистором.
Для этого нужно подключить его на плату вместо перемычки.
Схема самодельного контроллера
Данная схема содержит минимальное количество компонентов в обвязках микросхем:
Основной контроллер ШИМ от 0% до 100%, что будет управлять всей мощностью в нагрузке, собран на микросхеме TL494.
При этом варианте включения компенсируется внутреннее смещение для формирования мертвого времени.
При коммутации больших токов возникают сильные помехи.
Изолированный источник питания +15 Вольт -12 Вольт с дополнительной защитой от перегрузок собран на микросхеме NE555.
Основной задаче является регулирование вторичных напряжений путём изменения частоты.
В зависимости от нагрузки он работает на частоте в диапазоне 120-480 кГц.
В случае перегрузки ширина импульса, а также частота, уменьшается.
Если же нагрузка отсутствует, на трансформаторе плюсовое плечо стремится к 25 вольтам, а минусовое напряжение уменьшается, пока не достигнет нуля.
Если на трансформаторе отсутствует нагрузка, то либо драйвер не подключён, либо холостой ход.
Для снижения помех и нагрузки на провода, отсекая реактивную энергию, следует установить обратный диод нагрузки в непосредственной близости к самой нагрузке.
В этом случае вы можете использовать проводники, чьё сечение меньше, чем у тех, что использовались при установке диода на удалении от нагрузки.
Тестирование контроллера
Одним способом применения данного контроллера является плавное регулирование оборотов электродвигателя.
При этом можно не удалять штатную дискретную схему регулировки оборотов – она остаётся, не нарушается и продолжает работать.
Схема подключается лишь тремя проводами: плюс на 12 Вольт, масса и провод самого электродвигателя.
Также плату можно использовать для замены переключателя и гасящего резистора в родной схеме.
Первым делом при тестировании убедитесь, что все детали на своём месте и надёжно закреплены.
Дальше изготовленный ШИМ регулятор для двигателя электровелосипеда должен быть одновременно подключён и к аккумулятору, и к мотору велосипеда, что будет приводить его в движение.
Используйте набор ячеек литиевых батарей, номинальное напряжение которые составляет 80 Вольт (такие батареи как раз используются в электровелосипедах).
Поворачивая потенциометр по часовой стрелке, двигатель вашего велосипеда постепенно начнёт вращаться, а его скорость увеличиваться пропорционально вращению ручки.
Если всё в порядке, то ваш самодельный ШИМ контроллер собран правильно.
Рекомендую следующее видео, в котором автор изготавливает ШИМ регулятор своими руками:
Как итог.
ШИМ регулятор своими руками готов. Собрать его не составит особого труда для любого, кто хоть немного разбирается в радиотехнике. Я собирал свой контроллер для использования в электродвигателе электровелосипеда, однако он может использоваться не только в двигателях. Это универсальное устройство – подойдёт и для настройки яркости ламп, и скорости оборотов мотора, и силы тока в зарядном устройстве.
Напишите в комментариях, как вы считаете насколько надёжны ШИМ-регуляторы с Алиэкспресс?