Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

СХЕМА АМПЕРМЕТРА

СХЕМА АМПЕРМЕТРА

Некоторые схемы и устройства, например усилители мощности, автомобильные зарядные устройства, лабораторные источники питания, могут иметь токи, которые достигают до 20 ампер и более. Ясно, что пару ампер можно легко померять обычным дешёвым мультиметром, а как быть с 10, 15, 20 и более ампер? Ведь даже на не очень больших нагрузках встроенные в амперметры шунтирующие резисторы в течение длительного времени замера, иногда даже часов, могут перегреться и в худшем случае поплавится.

Включение схемы амперметра

Профессиональные инструменты для измерения больших токов, достаточно дорогие, так что имеет смысл собрать схему амперметра самому, тем более ничего тут сложного нет.

Электрическая схема мощного амперметра

Схема, как вы можете видеть, очень простая. Её работа уже испытана многими производителями, и большинство промышленных амперметров работают таким же образом. Например, вот эта схема тоже использует данный принцип.

Электрическая схема мощного амперметра на ОУ

Рисунок платы мощного амперметра

Особенность заключается в том, что в данном случае используется шунт (R1) с сопротивлением очень низкого значения — 0.01 Ом 1% 20W — это дает возможность рассеять совсем немного тепла.

Работа схемы амперметра

Работа схемы довольно проста, при прохождении определенной тока через R1 будет падение напряжения на нём, его можно измерить, для этого напряжение усиливается операционным усилителем OP1 и поступает далее на выход через контакт 6 на внешний вольтметр, включенный на пределе 2V.

Сборка самодельного амперметра

Настройки будут заключаться в установке ноля на выходе амперметра при отсутствии тока, и в калибровке, сравнивая его с другим, образцовым инструментом для замера тока. Питается амперметр стабильным симметричным напряжением. Например от 2-х батареек по 9 вольт. Для измерения тока подключите датчик к линии и мультиметр в диапазоне 2V — смотрите показания. 2 вольта будет соответствовать току 20 ампер.

Испытания схемы амперметра

Испытания схемы амперметра

С помощью мультиметра и нагрузки, например небольшой лампочки или сопротивления, мы будем измерять ток нагрузки. Подключим амперметр и получаем показания тока с помощью мультиметра. Рекомендуем выполнить несколько тестов с разными нагрузками, чтобы сравнить показания с эталонным амперметром и убедиться, что все работает правильно. Скачать файл печатной латы можете здесь.

Originally posted 2019-08-17 19:22:36. Republished by Blog Post Promoter

Электрическая схема цифрового вольтметра и амперметра

Цифровой вольтметр и амперметр крупным планом

В статье представлены рабочие электрические схемы цифровых вольтметра и амперметра, а также схемы их подключения, что позволит создать, подключить и наладить приборы самостоятельно.

  1. Микросхема СА3162Е для вольтметра и амперметра

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас используются цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е для цифровых вольтметра и амперметра

Существуют и другие микросхемы аналогичного действия. Например, микросхема СА3162Е предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор, нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а также, трех управляющих ключей.

Тип индикаторов может быть любым — светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Схематическое изображение вольтметра

Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2

Выше можно увидеть электрическую схему вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11–10 (вход) микросхемы D1 через делитель на резисторах R1–R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так, чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7–R13 подключены к сегментным выводам светодиодных индикаторов Н1–НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1–VT3, на базы которых подаются команды с выходов Н1–НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схематическая конструкция амперметра

Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2

Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Выбрав другие делители и шунты, можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А. Это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Также, на основе данных схем можно сделать и самостоятельный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150 mA.

Подключение прибора
На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Схема подключения вольтметра и амперметра в лабораторном источнике

Ниже отражена схема подключения измерителей в лабораторном источнике:

Схема, показывающая принцип подключения измерителей

Схема подключения измерителей в лабораторном источнике

Самодельный автомобильный вольтметр на микросхемах

Рекомендации по подбору комплектующих для монтажа вольтметра и амперметра

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов нам известна только NTE2054. Возможно есть и другие аналоги. С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1–VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры — к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание цифрового вольтметра и амперметра

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, а подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11–10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но нам показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

Таким же образом можно сделать и автомобильный вольтметр:

Схема самодельного автомобильного вольтметра

Самодельный автомобильный вольтметр на микросхемах

От первой схемы эта отличается только входом и схемой питания. Такой прибор теперь питается от измеряемого напряжения, то есть измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в первой схеме, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Видео о создании цифрового вольтметра своими руками:

Щитовой ампервольтметр 100 Вольт 10 Ампер

Я уже как-то выкладывал обзор очень похожего прибора, даже название обзора было почти таким же, но в этот раз приборчик стоит немного дешевле, да и качество точно не хуже чем у предыдущего. В общем мини обзор полезной для радиолюбителя вещицы.

Перед тем как перейти к собственно обзору, пару слов о цене. В заголовке указана цена $1.72, на самом деле общая стоимость выходит больше из-за платной доставки, причем в Россию она дешевле чем к нам и сумма составляет $2.51 против $3.97, но так как в заказе было с десяток приборов, то в итоге разница получилась не такой и большой.

Технические характеристики
Измеряемое напряжение — до 99.9 Вольта
Разрешение при измерении напряжения — 0.1 Вольта
Измеряемый ток — до 9.99 Ампера
Разрешение при измерении тока — 0.01 Ампера
Точность измерения: 1% (± 1 разряд)
Напряжение питания — 4-30 Вольт
Ток потребления — менее 20 мА
Частота обновления: около 3 Гц
Размеры: 48 мм * 29 мм * 26 мм
Рабочая температура:-10 °-+ 65 °

Каждый ампервольтметр упакован в индивидуальный антистатический пакет.

Кроме ампервольтметра в комплект входит и комплект проводов для подключения.

Размеры стандартные, 48х29х26 мм наружный и 45х26мм монтажное окно.

Индикатор закрыт коричневым пластиковым светофильтром, длина проводов около 20см, на концах имеются соответствующие разъемы для подключения к плате.

Разбирается прибор предельно просто, надо отогнуть пластмассу сбоку корпуса и освободить выступающую часть печатной платы.

Хотя по большому счету делать это вряд ли придется, все детали кроме индикатора размещены сзади.
Пайка платы аккуратная, особенно с учетом низкой цены прибора.

Печатная плата немного поближе.

1. Измерением и индикацией занимается микроконтроллер N76E003AT20 производства Nuvoton.
2. За усиление сигнала с шунта отвечает операционный усилитель LM358, не самый лучший вариант, но в любом случае лучше чем когда этим занимается сам микроконтроллер.
3. Шунт проволочный, что на мой взгляд лучше чем низкоомный SMD резистор.
4. Питается конструкция через стабилизатор 3.3 Вольта, выше виден небольшой диод отвечающий за защиту от переполюсовки питания.

Подключение стандартное для таких приборов:
Тонкий красный — питание прибора
Тонкий черный — общий контакт питания прибора
Тонкий белый — вход измерения напряжения.
Толстый красный — вход измерения тока
Толстый черный — общий провод измерения тока, соединен с общим проводом питания.

Первое на что обращаешь внимание при включении, анимация по крайним сегментам индикатора, я как-то раньше подобного не встречал.

Ну и конечно же тесты.
Для начала оценка тока потребления и минимального рабочего напряжения.

1. При напряжении около 2.6 Вольта прибор включается, но показания на дисплее будут далеки от реальных.
2. Дальнейшее повышение напряжения питания до 3.6-3.7 Вольта выводит прибор на рабочую точку, это видно по прекращению роста потребляемого тока. Ток потребления при этом около 10мА
3. При входном напряжении 28 Вольт ток потребления сохраняется примерно на том же уровне.
4. Близкий к максимальному ток потребления составляет около 12-13 мА
5. При входном напряжении 3.7 Вольта показания уже корректные. На фото вход прибора подключен к питанию самого прибора.
6. Показания немного занижены, буквально на 0.1 Вольта, но это проявляется и при более высоком напряжении питания.

Тест показал что:
1. Потребление явно ниже заявленных «до 20 мА» и реально ближе к 10-13, что как по мне очень даже неплохо.
2. Минимальное напряжение питания не 4, а 3.7 Вольта, так что здесь тоже все отлично.

Тест погрешности измерения напряжения показал, что прибор в диапазоне 0.5-62 Вольта занижает показания примерно на 0.1-0.2 Вольта, что также вписывается в заявленный 1% погрешности.
Причем по крайней мере в диапазоне 0-20 Вольт показания очень близки к реальным так как даже небольшое повышение напряжения исправляет ситуацию, это видно на втором и третьем фото, где я подавал напряжение в 1 Вольт.

С током ситуация заметно хуже, погрешность хоть и почти вписывается в заявленную, но как по мне великовата, уже при токе в 5 Ампер разница составила 0.06 Ампера.

Для коррекции на плате есть пара подстроечных резисторов, причем судя по тому, что они стоят в среднем положении, никто и не пытался ничего настраивать.
Регулировка довольно грубая, что не очень удобно. Рекомендую корректировать при максимально возможном токе и напряжении, но так как входное напряжение прибора до 100 Вольт, то делать это надо аккуратно.

Из-за грубой регулировки результат получился немного хуже чем я ожидал, 50-60 Вольт стали отображаться полностью корректно, но при более низком напряжении вольтметр все равно занижал результат на 0.1 Вольта.

А вот коррекция измерения тока даже после первой попытки дала заметно лучший результат, разница составляет всего 0.01 Ампера, да и то не везде.

Так как описывать особо больше нечего, то подведу краткий итог:
Прибор довольно легко поддается калибровке, хотя даже изначально при измерении напряжения погрешность была не очень большой.
Имеет очень малый ток потребления и диапазон рабочего напряжения примерно от 3.7 Вольта.
При всем этом цена более чем доступна.

На мой взгляд, с учетом перечисленных преимуществ, я могу смело рекомендовать его к приобретению.

Амперметр: виды, сфера использования, советы по выбору

Амперметр используют, чтобы снять замеры силы тока в электроцепи. Его подключают последовательно к тому участку, в котором снимаются замеры. Внутреннее сопротивление прибора слишком маленькое, чтобы как-то влиять на результаты замеров.

Особенности прибора

Амперметр: виды, сфера использования, советы по выбору

Амперметры различаются в зависимости от того, насколько подробно представлена шкала с долями ампера:

  • для измерения в микроамперах – микроамперметры;
  • для измерения в миллиамперах – миллиамперметры и т.д.

Пределы измерений можно расширить, если в цепь к амперметру добавить магнитный усилитель, трансформатор тока или шунт. Если использовать шунт, то нужно выбрать такой, чтобы сопротивление в рабочей катушке и в нем было 10:1, 100:1 или 1000:1.

Шунт крепится к амперметру с помощью специальных гаек.

Подключая оборудования к сети важно учитывать его полярность – если подключить неправильно, прибор будет показывать отрицательные значения.

Принцип действия

На оси кронштейна располагается якорь из стали и постоянный магнит. Стрелка прибора находится на нуле, когда на якорь воздействует только постоянный магнит.

При подключении прибора к цепи, магнитный поток от протекающего по шине тока тоже начинает воздействовать на якорь, вследствие чего стрелка стремиться отклониться на 90°. Чем выше сила тока, тем сильнее сможет отклониться стрелка – именно этот параметр и замеряет амперметр.

В зависимости от способа отображения результатов измерений различают цифровые (когда результат выводится на дисплей) и аналоговые приборы (результат отображается колебаниями стрелки на шкале).

Амперметр: виды, сфера использования, советы по выборуФерродинамический

Самый точный вид аналоговых амперметров. Устойчив к влиянию магнитного поля окружающих предметов, можно использовать без специальной защиты.

Конструкция представляет собой ферромагнитный провод (замкнутый), плотно зафиксированную катушку и сердечники. Используется в различных отраслях тяжелой и военной промышленности.

Плюсы:

  • точность замеров;
  • легкость в эксплуатации;
  • надежность.

Амперметр: виды, сфера использования, советы по выборуЭлектромагнитный

Имеет довольно простую конструкцию. Состоит из одного или нескольких сердечников и специального устройства. Точность измерения параметров ниже, чем у остальных видов приборов. Применяются для снятия параметров в стандартных электроустановках переменного тока, у которых частота 50 Гц.

Из плюсов – это универсальный прибор, которым можно измерять силу как переменного, так и постоянного тока.

Термоэлектрический

Амперметр: виды, сфера использования, советы по выбору

Состоит из проводника (магнитоэлектрического механизма), к которому припаяна термопара. Она фиксирует момент, когда механизм нагревается под силой тока, проходящего по проводку. Из-за повышения температуры образуется излучение, которое влияет непосредственно на стрелку прибора – она отклоняется на угол, пропорциональный силе тока.

Используется для измерения постоянного тока в лабораторных условиях и разных сферах промышленности. Более чувствителен, чем электромагнитный.

Плюсы:

  • потребляет мало электричества при использовании;
  • показывает точный результат;
  • высокочувствителен.

Минусы:

  • ограниченная сфера применения;
  • наличие подвижной детали;
  • сложная конструкция.

Электродинамический

В корпусе амперметра находятся две катушки – подвижная и плотно зафиксированная. Используются для измерения силы тока в цепях с частотой до 200 Гц.

Плюсы – это универсальный амперметр, который может работать как с постоянным, так и с переменным током.

Минусы – слишком высокая чувствительность прибора. Поля от находящихся поблизости предметов могут создавать для него существенные помехи. Чтобы получить максимально правдивые показатели, нужно использовать электродинамический амперметр вместе с защитным экраном.

Высокая точность прибора позволяет использовать его для поверки новых амперметров других видов.

Цифровой

Амперметр: виды, сфера использования, советы по выбору

Все большей популярности набирают цифровые амперметры. Их широко используют как в быту, так и в разных сферах промышленности. Устройство имеет аналого-цифровой преобразователь (компаратор), который выводит результат замеров на ЖК-дисплей.

Погрешность показателей варьируется от 0,2% до 0,5% в зависимости от типа устройства и производителя. На рынке встречаются устройства, адаптированные для работы в разных сетях.

Плюсы:

  • прост в эксплуатации;
  • компактные размеры;
  • минимальная погрешность;
  • невосприимчивость к вибрациям;
  • результат измерений выводится сразу на экран, без задержки, как в аналоговых устройствах.
  • устойчивость к механическим ударам.

Минусы:

  • нуждается в собственном источнике питания;
  • высокая стоимость относительно аналоговых вариантов.

Цифровые амперметры могут быть разной конструкции – зафиксированные на DIN-рейке либо в щитовом исполнении.

Сфера применения

Амперметры используют в быту и в разных сферах промышленности – например, в компаниях, связанных с продуцированием и распределением тепловой или электрической энергии:

  • строительстве;
  • исследовательских институтах;
  • электролабораториях;
  • автомобильной промышленности.

Амперметром пользуются многие автомобилисты – для контроля величины силы тока в бортовой сети машины, для определения энергопотребления узлов машины и т.д.

В быту чаще всего используются однофазные приборы, для промышленных сетей – трехфазные.

Как выбрать

Самые удобные и точные амперметры – цифровые. В последнее время им на смену пришли более универсальные приборы – мультиметры, которые в числе прочих функций умеют и замерять ток.

При выборе прибора нужно обращать внимание на следующие критерии:

  • Покрытие зажимов контактов. Зажимы с антикоррозионным слоем будут служить гораздо дольше.
  • Более точные показатели будут у прибора с сопротивлением до 0,5 Ом.
  • Желательно, чтобы корпус был герметичным – это защитит его функциональные детали от влаги.
  • При проведении замеров нельзя дотрагиваться к неизолированным элементам устройства – они могут проводить ток.

Последовательность подключения

Амперметр: виды, сфера использования, советы по выбору

Чтобы получить правильные результаты замеров, нужно знать особенности подключения оборудования к цепи и соблюдать технику безопасности.

Прямое подключение амперметра к источнику питания вызовет короткое замыкание!

Порядок действий:

  1. Перед подключением нужно подобрать соответствующий трансформатор или шунт
  2. Установить правильный предел измерений. Рассчитать максимальный ток, который может быть в цепи можно по закону Ома или мощности потребителя.
  3. Установить режим, в котором будет работать амперметр.
  4. Подключить устройство к трансформатору или шунту.
  5. Подать питание.
  6. Цифровые амперметры сразу покажут результаты замеров, аналоговые – спустя некоторое время после включения.

Обзор цифровых моделей

ABB AMTD-2-R 2CSG213655R4011

Амперметр: виды, сфера использования, советы по выбору

Цифровой амперметр итальянского производства. Отличается высокой точностью, простотой использования и надежной сборкой. Подключается к цепи через шунт. Из минусов можно отметить высокую стоимость прибора.

Характеристики:

  • погрешность – 0,5%;
  • способ установки – Din 35 мм;
  • потребляемая мощность – 4 ВА;
  • ориентация – горизонтальная;
  • вес – 0,3 кг;
  • диапазон измерения силы тока – 5-600 А;
  • цена – 15 000 руб.

Амперметр: виды, сфера использования, советы по выборуABB AMTD-1 2CSM320000R1011

Цифровой амперметр, предназначен для замеров переменного тока. Страна-производитель – Италия.

Характеристики:

  • погрешность – 0,5%;
  • способ установки – Din-рейка;
  • ориентация – вертикальная и горизонтальная;
  • вес – 0,3 кг;
  • подсветка дисплея;
  • цена – 8000 руб.

Амперметр: виды, сфера использования, советы по выборуDigiTOP АМ-3м

Трехфазный амперметр для измерения переменного тока. На дисплее отображаются результаты замеров по каждой фазе. Страна-производитель – Украина. Из минусов – довольно высокая погрешность и небольшой диапазон измерений.

Характеристики:

  • погрешность – 1,5%;
  • диапазон измерений – 1-63А;
  • способ установки – монтаж в электрический щит;
  • вес – 0,155 кг;
  • устойчивость к помехам и вибрации;
  • цена – 1500 руб.

Амперметр: виды, сфера использования, советы по выборуEKF PROxima AD-723

Трехфазный амперметр. Страна-производитель – Россия. Из минусов можно отметить отсутствие подсветки и довольно большие размеры – 72х72 см.

Характеристики:

  • погрешность – 0,5%;
  • вес – 0,23 кг;
  • цифровой дисплей;
  • сенсорная панель управления;
  • цена – 2000 руб.

Таким образом, для постоянной работы с измерениями тока лучше выбрать цифровой амперметр – он более надежный, показывает результат с минимальной погрешностью. Для бытовых нужд достаточно аналогового устройства.

Видео-обзор работы амперметра

голоса
Рейтинг статьи
Читайте так же:
Четырехстоечный подъемник своими руками
Ссылка на основную публикацию
Adblock
detector