Alp22.ru

Промышленное строительство
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилитрон как определить напряжение стабилизации

Стабилитрон как определить напряжение стабилизации

Стабилитрон – это специальный полупроводниковый диод, при работе которого используется обратная ветвь вольт-амперной характеристики в режиме электрического пробоя. При значительных изменениях силы обратного тока через диод напряжение на нем практически не изменяется (стабильно). Если параллельно стабилитрону подключить нагрузку, то напряжение на ней тоже не будет изменяться. Стабилитроны изготавливаются из кремния и называются иногда опорными диодами. У них до наступления пробоя обратный ток очень мал, а в режиме пробоя сравним с прямым током. На рисунке 3.29 показан вид обратной ветви вольт-амперной характеристики стабилитрона .

Стабилитрон характеризуется следующими основными параметрами: минимальный и максимальный ток стабилизации, напряжение стабилизации при заданном токе стабилизации (см. рис. 3.29), дифференциальное сопротивление, температурный коэффициент напряжения стабилизации, максимальная допустимая мощность, рассеиваемая в стабилитроне.

Дифференциальное сопротивление – это отношение изменения напряжения стабилизации к изменению силы тока стабилизации. Изменение тока нужно выбирать как можно меньше, чтобы можно было указать значение сопротивления для определенного тока стабилизации. С уменьшением тока стабилизации дифференциальное сопротивление стабилитрона увеличивается. Минимальное значение тока стабилизации как раз и определяется допустимым увеличением дифференциального сопротивления стабилитрона.

Дифференциальное сопротивление стабилитронов составляет единицы и десятки ом. Для идеального стабилитрона дифференциальное сопротивление равно нулю и рабочую (обратную) ветвь вольт-амперной характеристики можно аппроксимировать двумя отрезками прямых. При напряжении, меньшем напряжения стабилизации, ток через стабилитрон равен нулю. При напряжении, равном напряжению стабилизации, изменение тока через стабилитрон не приводит к изменению напряжения на нем.

Дифференциальное сопротивление стабилитрона (сопротивление переменному току) не следует путать с его статическим сопротивлением (сопротивлением постоянному току), которое во много раз больше дифференциального.

Максимальный ток стабилизации стабилитрона определяется допустимой мощностью рассеяния.

Температурный коэффициент напряжения стабилизации (ТКН) показывает относительное изменение напряжения стабилизации при изменении температуры на 1 К:

Часто ТКН выражают в процентах.

ТКН стабилизации может быть отрицательным (у полупроводников с большой концентрацией примесей, малой толщиной перехода, где пробой происходит за счет туннельного эффекта) и положительным (в полупроводниках с меньшей концентрацией примесей, большей толщиной p — n перехода, где пробой возникает при более высоких напряжениях и является лавинным). У некоторых стабилитронов ТКН стабилизации изменяет знак при изменении величины тока через стабилитрон.

Значение тока через стабилитрон, при котором изменяется знак ТКН стабилизации, определяет так называемую термостабильную точку стабилитрона. Знание такой точки важно при проектировании высокостабильных стабилизаторов постоянного напряжения.

Как проверить стабилитрон и стабилизатор напряжения мультиметром

Проверка стабилитрона

Стабилитрон (Диод Зенера) по внешнему сходству напоминает диод. Однако его функции отличаются от диода по вольт-амперной характеристике (ВАХ). Диод Зенера обладает высоким сопротивлением, но при воздействии на него определённым напряжением, возникает пробой. Из-за этого возрастает протекающий через него ток. В режиме пробоя величина напряжения на стабилитроне с широким диапазоном токов поддерживается с указанной точностью.

Читайте так же:
Как подключить кабеля к сварочному инвертору

Проверка стабилитрона мультиметром

Для того чтобы проверить стабилитрон мультиметром, необходимо обладать определенными знаниями.

Измерение с помощью мультиметра аналогично проверке диода. Рабочим состоянием стабилитрона можно охарактеризовать его способность пропускать ток только в одном направлении.

На измерительном приборе это может выглядеть следующим образом:

  1. Если измерения проводятся цифровым прибором, с присоединением плюсового щупа к катодному выводу, обозначенному полоской, а минусового щупа к анодному выводу, значит, на приборе должны быть отражены показания в виде цифр (например, проверка стабилитрона 5,1 В отображается на табло мультиметра показания 688 Ом). Если же поменять щупы местами, то на приборе отобразится бесконечное сопротивление, что характерно указывает про исправный радиоэлемент. Когда при соединении на мультиметре указано в обоих направлениях бесконечное сопротивление, то это указывает на обрыв элемента. В случае если сопротивление в обоих направлениях равняется нулю, то такой элемент является пробитым.
  2. Аналогично измерение можно проводить стрелочным прибором, где в одном направлении вместо цифр стрелка указывает сопротивление, а в другом бесконечное сопротивление.

Как проверить стабилитрон мультиметром

В полупроводниковой технике могут примениться двухсторонние стабилитроны (КС175А), а также прецизионные (Д818). Их нельзя проверить методом, описанным выше, поскольку в обоих направлениях их сопротивление является бесконечным. Для проверки этих элементов можно применить способ, приведённый ниже.

Измерение по схеме стабилизатора

Этот способ позволяет провести замеры параметров радиоэлементов путём включения их в схему и приложенного напряжения источника питания. В зависимости от напряжения стабилизации проверяемого компонента, необходимо иметь делитель состоящего из одного и более резисторов. Источник питания подключается непосредственно к заранее собранной электрической схеме, включённой с общим минусом или общим плюсом. Эта схема является параметрическим стабилизатором напряжения:

Как проверить стабилитрон и стабилизатор напряжения мультиметром

  1. Рассмотрим включение схемы в общим минусом. Положительный провод источника питания присоединяется к выводу 1 делителя которым служит резистор R, а испытуемый стабилитрон подключается катодом к выводу 2 резистора R. Анодный вывод стабилитрона соединён с минусовым выводом источника питания и является общей шиной питания. Резистор делителя выбирается таким образом, чтобы приложенное напряжение от источника питания достигло такого уровня, что позволит на выводе 2 резистора получить ток пробоя стабилитрона, при котором он откроется.
  2. Мультиметр переключается в режим измерения постоянного напряжения, после чего плюсовой вывод вольтметра соединяется к выводу 2 резистора, а минусовый вывод подключён к общей шине, это минус источника питания+анод испытываемого элемента. Источник питания желательно иметь с плавной регулировкой, что придаёт этому способу возможность осуществлять испытание широкого спектра стабилизируемых напряжений.

На примере рассмотрим диод Зенера со стабилизацией 12 В. Для этого необходимо приложить напряжение таким образом, чтобы на выводе 1 делителя оно составляло около 11 В, при сопротивлении делителя выбранным примерно 100Ом. Вольтметр на выводе 2 резистора (без нагрузки). Напряжение перед делителем и после него остаётся неизменным, в зависимости от выбранного сопротивления. Если на вывод 1 делителя приложить выше 12 В или выше, то при этом на выходе делителя вывода второе напряжение не должно превышать 12 В, что указывает на его исправность.

Делитель R выбирается таким образом, чтобы ток источника на выводе 2 не превышал максимальный ток стабилитрона, что чревато выходом из строя последнего.

Если же исследуемый элемент является пробитым или неправильно включен в схему, то напряжение на вольтметре равняется нулю, а также произойдёт нагрев делителя. Если же элемент в обрыве, то приложенная величина на входе делителя, будет выше чем 12 В, то испытываемый элемент можно считать неисправным.

Читайте так же:
Как просверлить отверстие в каленом металле

Прецизионные и двухсторонние устройства

Измерение по схеме стабилизатора

Аналогичным способом проверяются прецизионные стабилитроны. Двухсторонние стабилитроны подключаются к выводам источника питания без соблюдения полярности.

Для проверки стабилизатора, необходимо переключить мультиметр в режим измерения постоянного тока, соблюдая полярность. Изначально проверяется величина подводящего питания к стабилизатору.

Если напряжение в норме, тогда мультиметр непосредственно подключается к выходу стабилизатора, измеряя величину напряжения уже на выходе.

Что такое стабилитрон и как он работает

Как известно, любой диод пропускает ток в прямом направлении, то есть когда плюс поступает на его анод, а минус — на катод, и не пропускает ток в обратном направлении.

Но среди прочих важных параметров у диода есть такой параметр как максимальное допустимое обратное напряжение. Это максимальное напряжение, приложенное к диоду в обратном направлении, при котором сохраняются его «диодные» свойства.

Допустим, мы подключим к диоду напряжение плюсом к катоду, а минусом к аноду (то есть, в обратном направлении) и станем это напряжение повышать.

Как только это напряжение достигнет «максимального допустимого» значения произойдет пробой диода Он потеряет свои «диодные» свойства и будет пропускать ток в обратном направлении.

Для обычного диода пробой вещь неприятная, часто приводящая к выходу диода из строя. По тяжести последствий таких пробоев бывает два типа:

Необратимый пробой — это выход из строя диода, порча его, поломка, полная непригодность.

Обратимый пробой — это когда диод пробило, но не испортило, то есть, он стал пропускать ток в обратном направлении, но если обратное напряжение на нем понизить то он опять, как ни в чем небывало, перестанет пропускать обратный ток.

Диоды с ярко выраженной склонностью к обратимому пробою выпускают специально, и делают их такими, чтобы этот обратимый пробой наступал при строго определенном обратном напряжении.

Такие диоды называют стабилитронами. А обратное напряжение, при котором происходит обратимый пробой стабилитрона называют напряжением стабилизации.

Теперь посмотрим в чем смысл такого диода Допустим, есть стабилитрон на напряжение стабилизации 10V. Это значит, что если на него подавать обратное напряжение ниже 10V, то он как любой диод, включенный в обратном направлении ток пропускать не будет.

Читайте так же:
Как анодировать алюминий в домашних условиях

А вот если обратное напряжение на нем достигнет 10V, произойдет обратимый пробой, ток возникнет и будет сильно увеличиваться если мы продолжим повышать напряжение.

Чтобы обратимый пробой не превратился в необратимый этот обратный ток нужно ограничивать, например, обычным резистором (как в случае со светодиодами).

Обозначение стабилитрона, схема подключения

А смысл стабилитрона в том, что если мы соберем схему, показанную на рисунке 2, то при колебаниях входного напряжения Uвх от величины напряжения стабилизации стабилитрона (Uct) до значительно больших величин, напряжение на стабилитроне не будет меняться, и будет равно Uct. Вот на этой основе и построено большинство схем стабилизаторов напряжения.

А схема, показанная на рисунке 2, это и есть простейший стабилизатор напряжения. На рисунке 1 показано обозначение стабилитрона на схеме. Оно похоже на обозначение диода, — треугольник это анод, а черточка — катод. Но у катодной черточки сделан уголок.

Если есть такой уголок, — значит это стабилитрон.

Внешний вид и обозначение стабилитронов на принципиальных схемах

Рис. 1. Внешний вид и обозначение стабилитронов на принципиальных схемах.

Схема подключения стабилитрона

Рис. 2. Схема подключения стабилитрона.

Стабилитроны выпускаются в таких же корпусах, как и диоды, и вообще внешне на них очень похожи. В схеме на рисунке 2 есть резистор R1, который нужен для ограничения тока через стабилитрон.

В справочниках обычно указывают не только напряжение стабилизации, но ток стабилизации, — минимальный и максимальный. Вот, например, популярный стабилитрон Д814А.

Напряжение стабилизации 7,5V, ток стабилизации минимальный 3 мА, максимальный 40 mA. Сопротивление R1 должно быть таким, чтобы ток через стабилитрон лежал в этих пределах, так как при токе ниже минимального (ниже ЗмА) обратимый пробой может и не наступить, либо будет нестабильным, а при токе более 40мА пробой может уже стать необратимым.

Допустим, у нас входное напряжение Ubx изменяется от 10 до 20V. Чтобы стабилитрон Д814А работал, нужно чтобы ток через него был не ниже 3 мА и не выше 40мА.

Так как напряжение стабилизации равно 7,5V, то напряжение, которое падает на R1 (U1) будет в пределах от 10-7,5=2,5V до 20-7,5=12,5V Для тока 40mA при максимальном Ubx сопротивление R1 определяем по Закону Ома:

R1 = 12,5V/0,04А = 312,5 Ом

Для тока 3 мА при минимальном Ubx сопротивление R1 определяем по Закону Ома:

R1 = 2.5V/0.003A = 833,333 От.

Из расчетов получается, что сопротивление R1 для нашего стабилизатора может быть любым в пределах от 312,5 до 833,333 От, например, 470 Ом.

Индикаторы напряжения на стабилитронах

Кроме стабилизаторов напряжения стабилитроны можно использовать и в индикаторах напряжения. На рисунке 3 показана схема индикатора напряжения 9V и больше. В этой схеме есть светодиод HL1, стабилитрон Д814А и токоограничивающий резистор R1.

схема индикатора напряжения 9V и больше

Рис. 3. Схема индикатора напряжения 9V и больше.

Стабилитрон Д814А имеет напряжение стабилизации 7,5V, то есть, он начинает пропускать ток, когда обратное напряжение на нем достигает 7,5V. А светодиод, который в этой схеме, имеет прямое напряжение падения 1,5V. В сумме это будет 9V. Когда напряжение Ubx ниже 9V напряжение на стабилитроне ниже 7,5V и тока через него нет.

Читайте так же:
Как правильно насадить топор на топорище видео

Соответственно, нет тока и через светодиод, так как они же включены последовательно. А вот когда напряжение Ubx больше 9V у стабилитрона возникает обратимый пробой, и ток начинает протекать через него и светодиод. Светодиод загорается. На рисунке 4 показана схема индикатора напряжения для автомобиля.

Здесь используются три стабилитрона с разными напряжениями стабилизации: Д814А — 7,5V, Д814В — 9,5V, Д814Д — 12V. И три ярких светодиода с падениями напряжения по 2,5V.

Схема индикатора напряжения для автомобиля, собрана с применением стабилитронов

Рис. 4. Схема индикатора напряжения для автомобиля, собрана с применением стабилитронов.

В результате, когда напряжение Ubx ниже 10V ни один из светодиодов не горит. При напряжении от 10V до 12V горит HL1. При напряжении от 12V до 14,5V будут гореть два светодиода HL1 и HL2. А при напряжении больше 14.5V горят все три светодиода. И, наконец, я вас совсем запутаю.

Помимо стабилитронов есть еще и стабисторы. Так вот многие неопытные радиолюбители путают эти два радиоэлемента. Стабисторы обычно используют для стабилизации малых напряжений, ниже 2V.

Разница в том, что если стабилитрон мы включаем в обратном направлении, и стабилизация достигается на эффекте обратимого пробоя обратным напряжением. Стабисторы же включают как обычные диоды, то есть, в прямом направлении.

А эффект стабилизации у стабистора достигается на начальном участке прямой ветви ВАХ. То есть, напряжение стабилизации стабистора это его прямое напряжение падения (как у светодиода).

Кстати, частенько и светодиоды используют в качестве стабисторов, чтобы получить стабильное малое напряжение, равное прямому напряжению падения на светодиоде.

Стабилитрон или диод Зенера

Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон , служит для стабилизации напряжения на выходе.

Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференциального сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Стабилитрон или диод Зенера

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Стабилитрон или диод Зенера

Рис.№2. Стабилитрон с резистором

Стабилитрон или диод Зенера

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Читайте так же:
Как очистить линолеум от монтажной пены

Основные электрические параметры, характеризующие стабилитрон

Стабилитрон или диод Зенера

Рис. №4. Электрические характеристики важные для стабилитрона.

Пояснение главных величин, которые характеризуют стабилитрон:

  • Стабилизирующее напряжение – U раб, оно соответствует средней точке в месте стабилизации. Напряжение стабилизации – средняя величина между минимальным и предельно-максимальным значением стабилизируемого напряжения.
  • Минимальный ток стабилизации, для этого значения осуществляется лавинный пробой p-n-перехода обратимого действия, он неизменно соответствует минимальному значению стабилизируемого напряжения.
  • Максимальный предельно-допустимый ток стабилитрона.
  • Ток стабилизации или прямой ток, он определяется, как – Iст.ном = Imax – Imin. (он способен выдержать в течение продолжительного отрезка времени p-n-переход без термического разрушения.
  • Температурный коэффициент – величина, которая служит для определения отношения изменяющейся температуры окружающей среды при токе неизменной величины. Для каждого типа стабилитрона свойствен свой коэффициент температуры.
  • Дифференциальное сопротивление – величина, которая зависит от приращения стабилизационного напряжения к приращению тока в определенном диапазоне частоты.
  • Рассеиваемая мощность – величина мощности, обеспечивающей необходимую надежность и рассеиваемую на стабилитроне.

Типы стабилитронов

Существует три основных типа стабилитронов:

  1. Прецизионные стабилитроны – для них свойственно наличие повышенной стабильности напряжения. Пример: 2С191 или КС211.
  2. Двухсторонние – ограничивают и стабилизируют двухполярное напряжение. Пример: 2С170А или 2С182А.
  3. Быстродействующий стабилитрон – пониженная величина барьерной емкости и небольшая работа переходного процесса – это делает возможным работать в области кратковременных импульсов напряжений. Это такие стабилитроны: 2С175Е; КС182Е; 2С211Е.

Распределение по мощности – это мощные и маломощные стабилитроны.

Особенности использования стабилитронов

Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.

Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.

Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector