Alp22.ru

Промышленное строительство
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цвет металла в зависимости от температуры

Цвет металла в зависимости от температуры

Температурный коэффициент сопротивления металлов.
Нажмите на изображение чтобы увеличить.

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Формула расчета удельного сопротивления

где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

Расчет сопротивления провода

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Расчет удельного сопротивления металлов

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.

Независимая Экспертиза Волгоград

Ситуаций, при которых требуется автоэкспертиза – множество и порядок проведение автоэкспертизизы следует доверять профессионалам.

Читайте так же:
Цепная пила из болгарки адаптер

Строительная экспертиза

Почерковедческая экспертиза

Почерковедческая экспертиза – один из видов идентификации личности.

Оценка бизнеса

Определение рыночной стоимости бизнеса включает в себя оценку всех активов.

Оценка ущерба

Если вашей квартире нанесен ущерб от пожара, затопления, независимая оценка ущерба — обратитесь к нам, используя контактную информацию.

Твердость стали: измерение, способы закалки

Для инструментальных сталей твердость измеряется в единицах по шкале Рокуэлла, сокращенно HRC. У ножей, в зависимости от области их применения, твердость должна быть от 56 до 62 HRC, при этом, чем больше число, тем выше твердость. Алмаз, самый твердый материал, имеет твердость в 100 единиц по шкале Рокуэлла. При проверке материала на твердость в него вдавливают алмазный шарик и по глубине его проникновения определяют твердость материала по шкале Рокуэлла. Твердость стали зависит от термической обработки, в особенности от отпуска, температура и длительность которого определяют ее эксплуатационную твердость. В начале сталь должна приобрести свою исходную твердость. Для этого высоколегированная инструментальная сталь нагревается до температуры закалки ( данная температура указывается заводом-изготовителем стали ), при чем разогрев осуществляется в вакууме или инертном газе, как правило, в аргоне, так как при соприкосновении с кислородом на поверхности изделия в процессе нагрева может начаться химическая реакция, в результате которой об¬разуется окалина, что требует дополнительной обработки поверхности после закалки. После того как температура стали достигла заданной величины, изделие охлаждается в закаливаемой среде — это может быть воздух, вода или масло. Простые сорта стали, например, углеродистые, закаливают в воде. Высоколегированные стали требуют закалки в более мягкой среде, а именно, в масле или сжатом воздухе. После закалки твердость стали слишком высока, чтобы ее можно было сразу использовать. Выше уже говорилось о том, что необходимая эксплуатационная твердость стали достигается с помощью отпуска, в процессе которого изделие вновь нагревается до температуры, которая значительно ниже температуры закалки, после чего вновь охлаждается. При отпуске на поверхности стали образуется оксидная пленка, в результате чего ее цвет меняется, причем в зависимости от толщины изделия цвет может быть разным, что объясняется различной температурой металла при той или иной его толщине. Цвет, который приобретает поверхность изделия в процессе отпуска, показывает, какой температуре оно подвергалось при нагреве, исходя из чего опять-таки можно судить о твердости стали, разумеется, лишь в том случае, если известно, какая твердость соответствует температурной области, необходимой для данной конкретной стали. Пример Допустим, необходимо довести путем отпуска твердость углеродистой стали С90 до 58 HRC. Из данных завода-производителя или фирмы, торгующей стальной продукцией, а также из кода стали известно, что данная сталь приобретает указанную твердость при температуре ок. 350°С. В практике существует таблица цветов, которые приобретает стальное изделие при определенной температуре отпуска. Из данной таблицы видно, что температуре нагрева в 250° С соответствует коричнево-красный цвет. Таким образом, клинок из стали С90 следует нагревать до тех пор, пока он не приобретет данный цвет, после чего его можно охладить. Такая таблица с указанием цветов побежалости может пригодиться в первую очередь в тех случаях, когда отсутствует закалочная печь с температурной шкалой или же она не может быть использована, например, при местной закалке. Местной закалке подвергаются ножи, у которых лезвие должно быть очень твердым, в то время как остальная часть клинка должна оставаться мягче, чтобы клинок в целом был более упругим и тем самым менее ломким.

Читайте так же:
Что такое шкив фото

Специалисты организации Независимая Экспертиза готовы помочь как физическим, так и юридическим лицам в определении различных видов оценки, экспертиз.

Если же после изучения этих разделов у Вас останутся нерешенные вопросы или же Вы захотите лично пообщаться с нашими специалистами или заказать измерение твердости металла ножа, всю необходимую для этого информацию можно получить в разделе «Контакты».

С нетерпением ждем Вашего звонка и заранее благодарим за оказанное доверие

Измерение твердости металла ножа проводится

г. Волгоград, ул. Иркутская, 7 (остановка ТЮЗ, отдельный вход с торца здания). 400074

Заключение «Независимой экспертизы» имеет статус официального документа доказательного значения и может быть использовано в суде.

Измерение высоких температур в металлургии — пирометр или термопара ?

Чтобы провести измерения температуры при плавке металла, в процессе литья в формы и при этом обеспечить безопасность, контроль технологических процессов в режиме онлайн, сохранить информационный массива с результатами в памяти для последующего анализа, установления зависимостей, потребуются металлургические ИК-пирометры, способные зафиксировать нагрев в несколько сотен или даже тысяч градусов, что позволяет придать необходимые свойства, состав и форму расплавленным заготовкам.

Но может быть есть альтернатива ?

Для металлургии пирометр лучше или контактный датчик ?

Измерять экстремальную температуру возможно как при помощи внешнего контактного датчика, так и дистанционным способом в зоне плавки.
Оба метода по-прежнему “на вооружении” на заводах, выплавляющих чугун, стали и сплавы, но по объективным причинам: техническим, экономическим и в плане снижения травматизма до минимума, "чаша весов" склоняется в пользу решения купить инфракрасный пирометр, который для безопасного температурного контроля в ряде случаев предпочтительнее, тем более учитывая, что Украина входит в ТОП-поставщиков металлургической продукции на мировом рынке и спрос на подобные приборы всегда будет.

Точка плавления стали достигает 1400-1500°C, чугуна – чуть меньше 1200-1300°C, что вызывает технические сложности, если проводить измерение температуры при помощи термопар.
Температурные показатели в значительной степени колеблются в зависимости от содержания углерода, и введения дополнительных легирующих добавок, что влияет на точность. При плавке в металле присутствуют нежелательные химические элементы – сера, фосфор, снижающие механические характеристики стали, чугуна и сплавов в процессе эксплуатации (возможно образование трещин, раковин и точек локального напряжения).

Читайте так же:
Как регулировать холостой ход на бензопиле

Измерение экстремально высоких температур расплавленного металла, используя контактные датчики организовать можно, но при достаточно серьезных ограничениях. Необходимо задействовать специальный измерительный зонд для безопасной работы производственного персонала на удалении.

Речь идет о дорогостоящих тугоплавких сенсорах на основе платины и вольфрама.
Другие материалы просто не подойдут — расплавятся и станут частью исследуемого материала как Терминатор из жидкой ртути в конце одноименного фильма.
Высок риск получения производственной травмы от расплавленных капель и теплового удара.
Но такой метод имеет ряд недостатков:

  • периодичность — нет возможности осуществлять температурный контроль в непрерывном режиме;
  • инерционность — датчик реагирует с опозданием, отставая от текущей температуры;
  • необходимость приближаться к зоне выплавки;
  • сложно встроить в систему автоматизированного управления технологической линией;
  • высокие накладные затраты на расходные материалы.

Для объективности отметим преимущество — зонды, в отличие от пирометров, не нуждаются в подстройке коэффициента эмиссии и могут касаться или погружаться в любое вещество, с произвольным видом поверхности и отражающей способностью.

Но на сегодня в металлургии предложен другой вариант — бесконтактный способ, путем улавливания инфракрасного излучения на безопасном расстоянии. Специальный ИК пирометр позволяет провести измерение высоких температур поверхности искрящейся ванны из железа, стали, тугоплавких материалов, раскаленных до 1500-2500°С и окупит себя благодаря комплексному решению перечисленных выше проблем, даже если цена в 5-10 раз выше, чем на бытовые аналоги.

Потери от производственного брака, срыва программы выпуска продукции не соизмеримы с инвестициями с высокотемпературную измерительную технику

Пирометры в металлургии

Измерение температур в тысячи градусов на расстоянии, в металлургическом производстве, а также в литейных цехах машиностроительных предприятий можно и нужно проводить при помощи дистанционных пирометров, но с учетом особенностей.

  1. Необходимо использовать модели с высоким верхним пределом, охватывающим диапазон температур на уровне не ниже 2000°C, перекрывающий практически весь спектр металлов и сплавов в жидком, расплавленном состоянии, за исключением тугоплавких материалов.
  2. Жизнь металлурга, как и любого человека, бесценна. Для безопасного удаления персонала от опасной зоны, пирометр должен обладать увеличенной разрешающей способностью. Увеличенное оптическое разрешение может достигать 1:50 и даже 1:75, что дает редкую возможность осуществлять измерение экстремальных температур в достаточно узкой зоне контроля со значительного удаления. Как в баскетболе. Регулярно попадать в кольцо с другого конца поля способны только звезды НБА.
  3. Радиационные пирометры для металлургии должны выдерживать долговременную постоянную эксплуатацию в условиях задымленности, и воздействия агрессивной и газообразной среды.
  4. Еще одно ключевое требование, имеющее первостепенное значение. Для измерения рекордных температур с учетом специфики, учитывая меняющую отражательную способность раскаленных компонентов — металла и шлаковых включений, в различных агрегатных состояниях необходимо устройство с настраиваемым коэффициентом эмиссии, чтобы на каждом из этапов технологического процесса быть уверенным в достоверности значения температуры.

Разберем последний пункт более подробно.

Низкая излучающая способность «зеркала» жидкого металла может в несколько раз занизить данные о реальной температуре. Неверно принятые производственные решения на основе недостоверной информации способны привести к остановке конвейера и возникновению аварий.

Читайте так же:
Как смешивать бензин с маслом для бензопилы

Отражательная способность шлака, плавающего на поверхности и расплавленного металла, различается в разы.

Чтобы обеспечить точное измерение высокой температуры, в комплекте аксессуаров должна быть тугоплавкая чаша для погружения в раскаленную массу.

Точнее даже нужно уточнить — важно то, что чаша обладает постоянной отражательной способностью, а значит прибор можно настроить на заданный коэффициент эмиссии.
Образно можно сказать, что это двухступенчатое измерение высокой температуры.
Направив линзу на стенку чаши, можно получить более достоверный показатель — сведено к минимуму влияние искрящейся ванны и шлаковых масс.

Двухспектральные высокотемпературные пирометры, регистрирующие тепловое излучение раскаленной поверхности на двух разных длинах инфракрасных волн.

Полученная пара сигналов, пропорциональных значениям температуры на разных частотах, сравнивается, за счет чего уменьшается степень воздействия возмущающих факторов в виде шлака и окислов.

В зоне выплавки всегда присутствуют:

Испарения
Газообразные взвешенные частицы
Водяные пары при охлаждении металлических слитков или в процесс термообработки — закалки, нормализации, отпуска, и других металлургических операций — легировании

Для минимизации влияния указанных факторов, целесообразно применение оптических пирометров (с исчезающей нитью) , слабо чувствительных к загрязнению воздуха в заводском цеху. У них есть еще одно преимущество — предел достигает впечатляющих 6000°C .

Благодаря непрерывности процесса контроля выплавки металлов и сплавов, они могут стать частью системы автоматизированного управления металлургическим циклом, которая включает набор контрольно измерительных приборов, датчиков, систем обратной связи, аварийной сигнализации.

Степень черноты поверхности материалов (металлов, диэлектриков, стройматериалов, оксидов)

Степень черноты материалов и веществ

Рассмотрены значения коэффициента излучения (степени черноты) для множества веществ и материалов: металлов и сплавов, диэлектриков, пластмасс, строительных материалов, оксидов и других. Степени черноты материалов представлены в таблицах в определенных интервалах температуры.

Степень черноты поверхности различных материалов в зависимости от температуры

В таблице приведена степень черноты поверхности следующих веществ в зависимости от температуры: алюминий (полированный и окисленный) Al, железо Fe, сталь, стальное литье, чугун, окись железа (оксид, ржавчина), золото Au, латунь, медь Cu, окись меди CuO, молибден Mo, никель Ni, окись никеля NiO, хромоникель, олово Sn, платина Pt, ртуть Hg, свинец Pb, хром Cr, цинк Zn, оцинкованное листовое железо, асбестовый картон, бумага, вода, гипс, дуб, кварц, кирпич, лак, шеллак, масляные, алюминиевые краски, мрамор, резина, стекло, сажа, толь, уголь C, угольная нить, фарфор, штукатурка, эмаль белая.

Степень черноты определяется отношением плотностей теплового потока собственного излучения тела и потока излучения абсолютно черного тела при той же температуре. Степень черноты характеризует полное или интегральное излучение тела, охватывающее все длины волн.

По данным таблицы видно, что высоким значением коэффициента излучения обладают такие материалы, как: железо (окисленное и гладкое), окись железа, никеля, окисленная медь, асбестовый картон и бумага, эмалевый лак, фарфор, штукатурка и другие шероховатые материалы.

Читайте так же:
Как заточить диск циркулярной пилы

Низкая величина степени черноты свойственна следующим материалам: полированные золото и алюминий, прокатанная латунь, медь с блестящей поверхностью, полированные никель, платина, олово, медь и другие гладкие и блестящие поверхности металлов.

Таблица 1. Степень черноты поверхности различных материалов в зависимости от температуры

Примечание: Две температуры и две степени черноты, указанные для некоторых материалов, означают, что первая степень черноты относится к первой температуре, а вторая — ко второй, причем допускается линейная интерполяция. Степени черноты, приведенные в таблице, получены путем измерения яркости излучения в направлении нормали к поверхности тела.

Степень черноты поверхности металлов

В таблице указана степень черноты металлов для различного состояния их поверхности (чистая или окисленная): алюминий Al, висмут Bi, вольфрам W, вольфрамовая нить, железо Fe, стальное литье полированное, сталь, чугун, золото полированное Au, латунь, магний Mg, медь Cu, молибденовая нить, нержавеющая сталь, никель Ni, окись никеля NiO, никонель, никелевая проволока, хром Cr, олово блестящее Sn, платина Pt, ртуть Hg, свинец Pb, серебро Ag, тантал Ta, цинк Zn.

Таблица 2. Степень черноты поверхности металлов

Примечание: Две температуры и две степени черноты, указанные для некоторых материалов, означают, что первая степень черноты относится к первой температуре, а вторая — ко второй, причем допускается линейная интерполяция. Степени черноты получены путем измерения яркости излучения в направлении нормали к поверхности тела.

Степень черноты диэлектриков

В таблице дана степень черноты поверхности следующих диэлектриков: асбест: бумага, картон, бетон, рубероид, вода, гипс, дерево: дуб, бук, карбид кремния, кирпич белый огнеупорный, шамотный, шероховатый красный, краска: масляная, всех цветов, лаковая, тускло черная, лед гладкий, шероховатые кристаллы, мрамор белый, окись алюминия на инконеле, окись магния огнеупорная, рокайд на молибдене, сажа от свечи, слюда, фарфор глазурированный, шифер, эбонит.

Таблица 3. Степень черноты диэлектриков

Примечание: Две температуры и две степени черноты, указанные для некоторых материалов, означают, что первая степень черноты относится к первой температуре, а вторая — ко второй, причем допускается линейная интерполяция.

Зависимость степени черноты материалов от температуры

В таблице приведена степень черноты следующих материалов в зависимости от температуры: алюминиевая фольга Al, оксид алюминия Al2O3, сплав алюминия полированный 245Т, BN, вольфрам полированный W, сульфид кадмия CdS, оксид гадолиния GdO, борид гафния HfB2, карбид гафния HfC, оксид гафния HfO2, железо полированное Fe, окислы железа, золото фольга Au, медь полированная и оксидированная Cu, оксид магния MgO, молибден полированный Mo, монель-металл полированный, хлорид натрия NaCl, никель полированный Ni, платина полированная Pt, ниобий полированный Nb, рений полированный Re, серебро полированное Ag, сапфир, нитрид кремния Si2N4, оксид кремния SiO2, тантал полированный, нитрид тантала TaN, оксид тория ThO, нитрид титана TiN, оксид титана TiO2, сплав титана А110-АТ полированный, углерод C, уран оксидированный U, бромид циркония ZrB2, карбид циркония ZrC, оксид циркония (диоксид циркония) ZrO2, сульфид ZnS, селенид цинка ZnSe.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector